№1 Дано: а=6 см S-? P-? Решение Р=а×4 6×4=24 см периметр квадрата S=a²или S=a×a (*не знаю по какой формуле вы решаете) 6²=36 или 6×6=36 см²-площадь квадрата ответ: S=36 см², Р=24 см
№2 Дано: а=6 см Р=18 см S-? Решение: Р=(а+в)×2, в=Р÷2-а 18÷2-6=9-6=3 см ширина прямоугольника S=а×в 6×3=18 см² площадь прямоугольника. ответ:S=18 см² S >< Дано а кв.- 4 см а прям-6 см в прям-2 см Sкв >, < S прям-? Решение: 4×4=16 см² S квадрата 6×2=12 см² S прямоугольника 16-12=4 см² S квадрата >S прямоугольника ответ: S квадрата >S прямоугольника на 4 см²
Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
Решение онлайн
Видеоинструкция
С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.
infinity
∫
pi
1/2*(x+1)*exp(x)
? dx
ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн
Применение метода интегрирования по частям
В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).
Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).
Типовые разложения по частям
Вид интеграла Разложения на части
∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx
∫ln(P(x))dx U=ln(P(x)); dV=dx
∫arcsin(ax)dx U=arcsin(ax); dV=dx
U=ln(x); dV=dx/x
При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx, и Вряд ли интеграл ∫x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.
Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.
ПРИМЕР №1. Вычислить ∫xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.
ПРИМЕР №2. Вычислить ∫xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C
Дано:
а=6 см
S-?
P-?
Решение
Р=а×4
6×4=24 см периметр квадрата
S=a²или S=a×a (*не знаю по какой формуле вы решаете)
6²=36 или 6×6=36 см²-площадь квадрата
ответ: S=36 см², Р=24 см
№2
Дано:
а=6 см
Р=18 см
S-?
Решение:
Р=(а+в)×2, в=Р÷2-а
18÷2-6=9-6=3 см ширина прямоугольника
S=а×в
6×3=18 см² площадь прямоугольника.
ответ:S=18 см²
S ><
Дано
а кв.- 4 см
а прям-6 см
в прям-2 см
Sкв >, < S прям-?
Решение:
4×4=16 см² S квадрата
6×2=12 см² S прямоугольника
16-12=4 см² S квадрата >S прямоугольника
ответ: S квадрата >S прямоугольника на 4 см²
Пошаговое объяснение:
Интегрирование по частям
Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
Решение онлайн
Видеоинструкция
С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.
infinity
∫
pi
1/2*(x+1)*exp(x)
? dx
ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн
Применение метода интегрирования по частям
В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).
Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).
Типовые разложения по частям
Вид интеграла Разложения на части
∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx
∫ln(P(x))dx U=ln(P(x)); dV=dx
∫arcsin(ax)dx U=arcsin(ax); dV=dx
U=ln(x); dV=dx/x
При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx, и Вряд ли интеграл ∫x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.
Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.
ПРИМЕР №1. Вычислить ∫xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.
ПРИМЕР №2. Вычислить ∫xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C
ПРИМЕР №3. ∫(3x+4)cos(x)dx