В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

A+b+c=2(ab+bc+ca) доказать , что хотя бы одно из чисел является целым . (также известно , что abc=8)

Показать ответ
Ответ:
Yabloco4
Yabloco4
06.10.2020 07:52
Утверждение выглядит весьма странно. Но чего не бывает в этой жизни... Но давайте поэкспериментируем.

Пусть, скажем, a=1/2.
Получаем из первого равенства bc=1/4, из второго bc=16; значит, решений нет.  

Пусть a=1/4. Из первого равенства b+c+1/4=b/2+c/2+2bc;
b+c=4bc-1/2. Из второго равенства bc=32; подставим в первое:
b+c=255/2. Пользуясь теоремой Виета, составляем уравнение, корнями которого будут служить b и c:
t^2-\frac{255}{2}t+32=0.

Чтобы не приходилось работать с дробями, применим такой трюк: домножим уравнение на 4 и заменим 2t на p:

p^2-255p+128=0; D=64513 - не является полным квадратом. Поэтому корни уравнения иррациональные, значит, b и c целыми быть никак не могут. Так что утверждение не только выглядит странно, но оно и неверно.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота