Дана функция y=-x^2 + 6x - 5. График этой функции - парабола ветвями вниз. Вершина параболы Хо = -в/2а = -6/-2 = 3, Уо = -9+18-5 = 4. Точки пересечения оси Ох: -х² + 6х - 5 = 0, Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=6^2-4*(-1)*(-5)=36-4*(-1)*(-5)=36-(-4)*(-5)=36-(-4*(-5))=36-(-(-4*5))=36-(-(-20))=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-6)/(2*(-1))=(4-6)/(2*(-1))=-2/(2*(-1))=-2/(-2)=-(-2/2)=-(-1)=1;x₂=(-√16-6)/(2*(-1))=(-4-6)/(2*(-1))=-10/(2*(-1))=-10/(-2)=-(-10/2)=-(-5)=5.Точка пересечения оси Оу берётся из уравнения при х = 0, у = -5.
По графику (и по анализу) определяем: 1) промежуток убывания функции: х ∈ (3; ∞); 2) при каких значениях x функция принимает отрицательные значения: х ∈ (-∞; 1) ∪ (5; +∞).
График этой функции - парабола ветвями вниз.
Вершина параболы Хо = -в/2а = -6/-2 = 3,
Уо = -9+18-5 = 4.
Точки пересечения оси Ох:
-х² + 6х - 5 = 0,
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=6^2-4*(-1)*(-5)=36-4*(-1)*(-5)=36-(-4)*(-5)=36-(-4*(-5))=36-(-(-4*5))=36-(-(-20))=36-20=16;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√16-6)/(2*(-1))=(4-6)/(2*(-1))=-2/(2*(-1))=-2/(-2)=-(-2/2)=-(-1)=1;x₂=(-√16-6)/(2*(-1))=(-4-6)/(2*(-1))=-10/(2*(-1))=-10/(-2)=-(-10/2)=-(-5)=5.Точка пересечения оси Оу берётся из уравнения при х = 0, у = -5.
По графику (и по анализу) определяем:
1) промежуток убывания функции: х ∈ (3; ∞);
2) при каких значениях x функция принимает отрицательные значения:
х ∈ (-∞; 1) ∪ (5; +∞).
х см - сторона квадрата
х2 (см2) - площадь квадрата
Ширина вырезанного прямоугольника - 5см
Длина=стороне квадрата = хсм
5х - площадь прямоугольника
х2-5х=150
х2-5х-150=0
D=b2-4ac
D=625
х=(5+25):2
х=15(см) - сторона квадрата
15*15=225(см2) - площадь квадрата