а) Путешествие Амира состоит их трех этапов. Объясните, что показывает график на каждом из этих этапов. б) Какое расстояние проехал Амир за 3 часа? B) Какой была скорость Амира в первый час путешествия? г) Какой была скорость Амира на третьем этапе путешествия? д) Какой была средняя скорость Амира в течении всего путешествия? е) Какую часть всего времени Амир оставался в одном месте?
Приравнять к нулю и решить как квадратное уравнение:
x² - 2x + 1 = 0
D=b²-4ac =4 - 4 = 0 √D=
0
х=(-b±√D)/2a
x=2/2
x=1.
Такое решение квадратного уравнения показывает, что парабола не имеет точек пересечения с осью Ох, парабола "стоит" на оси Ох в точке х = 1, весь график расположен над осью Ох.
Проекция - основание перпендикуляра из точки A на данную прямую. Пусть точка B - точка на данной прямой, в которую спроектировалась т. A. Выразим "у" в уравнении прямой:
По теореме о двух перпендикулярных прямых с уравнениями у1=k1x+b1 и y2=k2x+b2: k1*k2=-1
, отсюда получаем, что . запишем уравнение прямой AB: . Чтобы узнать коэффициент b2, подставим в уравнение координаты точки A (т.к. эта прямая проходит через точку A).
Теперь когда мы знаем уравнения обеих прямых, и то, что они пересекаются, найдем точку их пересечения, приравняв уравнения друг к другу:
Получили первую координату искомой точки. Теперь найдем вторую координату подставив первую координату в любое из уравнений:
В решении.
Пошаговое объяснение:
1) (х - 4)(х + 2) > (x - 5)(x + 3)
x² + 2x - 4x - 8 > x² + 3x - 5x - 15
x² - 2x - 8 > x² - 2x - 15
x² - x² - 2x + 2x + 15 - 8 > 0
7 > 0, доказано.
Решение неравенства: х∈(-∞; +∞).
х может быть любым.
2) (m - 4)(m + 6) < (m + 3)(m - 1)
m² + 6m - 4m - 24 < m² - m + 3m - 3
m² + 2m - 24 < m² + 2m - 3
m² - m² + 2m - 2m - 24 + 3 < 0
-21 < 0, доказано.
Решение неравенства: m∈(-∞; +∞).
m может быть любым.
3) x² + 1 >= 2x
x² - 2x + 1 >= 0
Приравнять к нулю и решить как квадратное уравнение:
x² - 2x + 1 = 0
D=b²-4ac =4 - 4 = 0 √D=
0
х=(-b±√D)/2a
x=2/2
x=1.
Такое решение квадратного уравнения показывает, что парабола не имеет точек пересечения с осью Ох, парабола "стоит" на оси Ох в точке х = 1, весь график расположен над осью Ох.
Поэтому х может быть любым.
Решение неравенства: х∈(-∞; +∞).
А при х = 1 x² + 1 >= 2x, доказано.
Выразим "у" в уравнении прямой:
По теореме о двух перпендикулярных прямых с уравнениями у1=k1x+b1 и y2=k2x+b2: k1*k2=-1
, отсюда получаем, что .
запишем уравнение прямой AB:
. Чтобы узнать коэффициент b2, подставим в уравнение координаты точки A (т.к. эта прямая проходит через точку A).
Теперь когда мы знаем уравнения обеих прямых, и то, что они пересекаются, найдем точку их пересечения, приравняв уравнения друг к другу:
Получили первую координату искомой точки.
Теперь найдем вторую координату подставив первую координату в любое из уравнений:
ответ: A(1;2)