ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
1) 7/15, 4/5 и 1/3 = 7/15, 12/15 и 5/15
Общий знаменатель 15
4/5 = 12/15 - доп.множ. 3
1/3 = 5/15 - доп.множ. 5
1 1/3, 2/5 и 4 3/4 = 1 20/60, 24/60 и 4 45/60
Общий знаменатель 60
1/3 = 20/60 - доп.множ. 20
2/5 = 24/60 - доп.множ. 12
3/4 = 45/60 - доп.множ.15
2 3/8, 1 7/9 и 3 5/6 = 2 27/72, 1 56/72 и 3 60/72
Общий знаменатель 72
3/8 = 27/72 - доп.множ. 9
7/9 = 56/72 - доп.множ. 8
5/6 = 60/72 - доп.множ. 12
2) 0,24 и 1,5 = 0,24 и 1,50 (сотые доли)
7,015 и 9,45 = 7,015 и 9,450 (тысячные доли)
4,7 и 0,067 = 4,700 и 0,067 (тысячные доли)
ответ:ответ. 102. Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
Пошаговое объяснение: