Обозначим треугольник как АВС, а середину гипотенузы ВС как К. Проведем прямую КМ (из середины гипотенузы к меньшему катету АС), перпендикулярную АС. КМ⊥АС(т.к. расстояние всегда измеряется длинной перпендикуляра). ВК=КС(по усл.) Рассмотрим ВА и КМ: ВА⊥АС и КМ⊥АС⇒ВА||АС(по теореме, или же по признаку параллельности прямых о соответственных углах(∠А=∠КМС) ⇒КМ не может пересекать ВА ⇒ АМ=МС Рассмотрим ΔАСВ и ΔКМС. ΔАВС подобен ΔКМС(по 2м углам, так как ∠АВК=∠МКС(как соответственные углы при парал. прям) и ∠С-общий). Составим пропорцию(большая сторона к меньшей):
КС=13÷2=6.5 МС=5÷2=2.5(по опр. средней линии)
КМ = 12 · 2.5 ÷ 5 = 6 ответ: 6.
Если будут неясности, напишите в комментарии, я учту.
ответ:Это четыре гирьки массой 1, 3, 9 и 11 г.
Пошаговое объяснение:
Значок «/» разделяет левую и правую чаши:
г => Груз / 1
2 г => Груз+1 / 3
3 г => Груз / 3
4 г => Груз / 1+3
5г => Груз+1+3 / 9
6 г => Груз+3 / 9
7 г => Груз+3 / 9+1
8 г => Груз+3 / 11
9 г => Груз / 9
10 г => Груз+1 / 11
11 г => Груз / 11
12 г => Груз / 11+1
13 г => Груз+1 / 11+3
14 г => Груз / 11+3
15 г => Груз / 11+3+1
16 г => Груз+1+3 / 11+9
17 г => Груз+3 / 11+9
18 г => Груз+3 / 11+9+1
19 г => Груз+1 / 11+9
20 г => Груз / 11+9
ВК=КС(по усл.)
Рассмотрим ВА и КМ: ВА⊥АС и КМ⊥АС⇒ВА||АС(по теореме, или же по признаку параллельности прямых о соответственных углах(∠А=∠КМС)
⇒КМ не может пересекать ВА ⇒ АМ=МС
Рассмотрим ΔАСВ и ΔКМС. ΔАВС подобен ΔКМС(по 2м углам, так как ∠АВК=∠МКС(как соответственные углы при парал. прям) и ∠С-общий). Составим пропорцию(большая сторона к меньшей):
КС=13÷2=6.5
МС=5÷2=2.5(по опр. средней линии)
КМ = 12 · 2.5 ÷ 5 = 6
ответ: 6.
Если будут неясности, напишите в комментарии, я учту.