Расстояние от хорды до параллельной ей касательной есть перпендикуляр. Надо доказать, что радиус, проведенный к точке касания перпендикулярен хорде. доказывается по свойствам углов, образованных двумя параллельными и секущей к ним. Если мы соединим концы хорды с центром окружности , то получим два прямоугольных треугольника, у которых общая сторона - радиус, пересекающий хорду. Эти треугольники равны по равенству катета и гипотенузы. Следовательно точка пересечения радиуса и хорды делит хорду пополам. Далее по теореме Пифагора находим отрезок радиуса, соединяющего центр окружности и точку пересечения радиуса с хордой и вычитаем его из радиуса. Находим искомое расстояние.
Решение C={треугольник, m, 5} C={треугольник, 5, m} C={ 5, m, треугольник} C={ 5, треугольник, m} C={ m, треугольник, 5).
Данные множества равные множеству C={ m, 5 треугольник}. Пояснения. Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A. Например, множество из трех элементов a, b, c допускает шесть видов записи:
получим два прямоугольных треугольника, у которых общая сторона - радиус, пересекающий хорду. Эти треугольники равны по равенству катета и гипотенузы. Следовательно точка пересечения радиуса и хорды делит хорду пополам.
Далее по теореме Пифагора находим отрезок радиуса, соединяющего центр окружности и точку пересечения радиуса с хордой и вычитаем его из радиуса. Находим искомое расстояние.
C={треугольник, m, 5}
C={треугольник, 5, m}
C={ 5, m, треугольник}
C={ 5, треугольник, m}
C={ m, треугольник, 5).
Данные множества равные множеству
C={ m, 5 треугольник}.
Пояснения.
Два множества A и B называются равными, если они состоят из одних и тех же элементов, т. е. если каждый элемент множества A принадлежит B и, обратно, каждый элемент B принадлежит A.
Например, множество из трех элементов a, b, c допускает шесть видов записи:
{a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}.