Берём 1-ый слева прямоугольник, находим его площадь: 3 * 9 = 27; берём прямоугольник посередине, находим его площадь: 3 * 6 = 18; Берём крайний справа прямоугольник, его ширина = (6-2) = 4 , а длина = ? Обозначим ? (т.е.длину этого прямоугольника) буквой "а", тогда его площадь = 4а. Общая площадь всей фигуры = 27 + 18 + 4а = 4а + 45.
Теперь подсчитаем периметр данной фигуры. Для этого нам надо сложить все граничные (наружные) размеры фигуры: основание фигуры = 3 +3 + а = 6 +а; 9 + 3 + 3 + 3 +2 + а + 4 + 6 +а = 30 + 2а; ответ: (30 +2а) - периметр фигуры; (4а + 45) - площадь фигуры.
3 I I I I 3 I I 3 9 I I2 I I a I I I I 4 I I I I 3 + 3 + a = 6 + a
Нана дIаяьлча йоьIан дагтIера зезаг дужу олуш ду вай. Дика къант ву, ша цомгуш хилла а бен шен да-наний холча ца хIоттийнарг, олуш ду нохчийн киц. Дуьненчу девллача дуьххьарлерчу дийнахь дуьйна лардеш ду бер ден а, ненан а шега болчу безамо.
Бер доккху хуьлуш, дозалла а деш, хьоьжа шен дега-нене, ма онда а, массо а хIума дан хууш а ву дада, ма хаза, марза ю нана бохуш. Ткъа дас-нанас сатуьйсу шайн берех дика адамаш хиларе, шайн хиллачул а гIоле дахар хир дацар те церан бохуш. Да-наний ду вай дахаран новкъахь дIадуьгурш.
Вайн дайша олуш хилла, да-наний маликаш санна ду олий. Цара лар а вийр ву, кIелхьара а вокхуш ву. Да-наний деза Iама, и шиъ дицдан ца деза, тIаьхьа байттамал ца хилийта. Вайн дайша къонах зуда ю олуш хилла, сий долуш, де долуш, къоманна тIе бала беача, шен дахар дIадала а кийча йолчу зудчух.
Нохчийн къоман актрисо Багалова Зулайс нохчийн мехкарийн а, зударийн а сий дар схьадогIуш ду боху, геннарчу бIешерашкара.
берём прямоугольник посередине, находим его площадь: 3 * 6 = 18;
Берём крайний справа прямоугольник, его ширина = (6-2) = 4 , а длина = ?
Обозначим ? (т.е.длину этого прямоугольника) буквой "а", тогда его площадь = 4а.
Общая площадь всей фигуры = 27 + 18 + 4а = 4а + 45.
Теперь подсчитаем периметр данной фигуры. Для этого нам надо сложить все граничные (наружные) размеры фигуры: основание фигуры = 3 +3 + а = 6 +а;
9 + 3 + 3 + 3 +2 + а + 4 + 6 +а = 30 + 2а;
ответ: (30 +2а) - периметр фигуры; (4а + 45) - площадь фигуры.
3
I I
I I 3
I I 3
9 I I2
I I a
I I
I I 4
I I
I I
3 + 3 + a = 6 + a