В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sannikova04
sannikova04
26.04.2023 12:23 •  Математика

Анарродился 27 сентября анор анор родился 27 сентября 2005 года A Summer на 79 дней раньше Когда родился Summer​

Показать ответ
Ответ:
мака2007
мака2007
22.07.2020 11:57

Дано: y(x) = √(-x²+12*x-6)

Найти: Значения Х при минимальных значениях y(x).

1. Функция y(x) = √f(x) - существует при f(x) ≥ 0.

2. Находим точки  f(x)=0  - под знаком радикала.

Решение.

1)  f(x) = - x² + 12*x - 6  - функция  под знаком корня.

2) Решаем квадратное уравнение f(x) = 0, находим дискриминант и корни уравнения.

D = 12² - 4*(-1)*(-6) = 144-24 = 120 - дискриминант.

√D = √120 = √(2²*30) = 2√30.

x₁ = 6 - √30, x₂ = 6 + √30 - корни квадратного уравнения. Получили область определения функции y(x):

X∈[x₁;x₂] - ООФ y(x). Минимальные значения функция на границах отрезка.

Ymin(x)=0 при x₁ = 6 - √30, x₂ = 6 + √30 - ответ.

Дополнительно - графики функций - в приложении.

Максимальное значение функции y(x) равно:

Ymax(6) = √30 (≈ 5,48).


Найдите точку минимума функции y=корень-6+12x-x^2
0,0(0 оценок)
Ответ:
ниро4
ниро4
22.07.2020 11:57

Дано: y(x) = √(-x²+12*x-6)

Найти: Значения Х при минимальных значениях y(x).

1. Функция y(x) = √f(x) - существует при f(x) ≥ 0.

2. Находим точки  f(x)=0  - под знаком радикала.

Решение.

1)  f(x) = - x² + 12*x - 6  - функция  под знаком корня.

2) Решаем квадратное уравнение f(x) = 0, находим дискриминант и корни уравнения.

D = 12² - 4*(-1)*(-6) = 144-24 = 120 - дискриминант.

√D = √120 = √(2²*30) = 2√30.

x₁ = 6 - √30, x₂ = 6 + √30 - корни квадратного уравнения. Получили область определения функции y(x):

X∈[x₁;x₂] - ООФ y(x). Минимальные значения функция на границах отрезка.

Ymin(x)=0 при x₁ = 6 - √30, x₂ = 6 + √30 - ответ.

Дополнительно - графики функций - в приложении.

Максимальное значение функции y(x) равно:

Ymax(6) = √30 (≈ 5,48).


Найдите точку минимума функции y=корень-6+12x-x^2
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота