Задача с квадратным уравнением. Имеем условия: 1. q = 120 - 10p 2. r = pq >= 360 (больше или равно 360)
Подставляя первое во второе, получаем:
pq = p(120 - 10p) = -10p^2 + 120p >=360 Разделим последнее на -10 (знак поменяет направление): p^2 - 12p +36 <= 0 Получается, это формула параболы. Решения находятся в той части параболы, которая находится на оси Х или ниже (потому что меньше или равно нуля) Дискриминант = в-квадрат минус 4 ас = 12*12 - 4*36 = 0 Значит, решение единственное.
Имеем условия:
1. q = 120 - 10p
2. r = pq >= 360 (больше или равно 360)
Подставляя первое во второе, получаем:
pq = p(120 - 10p) = -10p^2 + 120p >=360
Разделим последнее на -10 (знак поменяет направление):
p^2 - 12p +36 <= 0
Получается, это формула параболы.
Решения находятся в той части параболы, которая находится на оси Х или ниже (потому что меньше или равно нуля)
Дискриминант = в-квадрат минус 4 ас = 12*12 - 4*36 = 0
Значит, решение единственное.
p = -b/2a = 12/2 = 6. Это ответ
Проверка: q = 120 - 10*6 = 60
r = pq = 6 * 60 = 360
Пошаговое объяснение:
1)
6×(7+9)=6×7+6×9=42+54=96
6×(7+9)=6×16=96
3×(8+4)=3×8+3+4=24+12=36
3×(8+4)=3×12=36
7×(6+5)=7×6+7×5=42+35=77
7×(6+5)=7×11=77
(20+1)×3=20×3+1×3=60+3=63
(20+1)×3=21×3=63
(30+2)×4=30×4+2×4=120+8=
=128
(30+2)×4=32×4=128
(50+5)×2=50×2+5×2=100+10=
=110
(50+5)×2=55×2=110
6×(6+30)=6×6+6×30=36+180=
=216
6×(6+30)=6×36=216
3×(5+20)=3×5+3×20=15+60=
=75
3×(5+20)=3×25=75
7×(8+40)=7×8+7×40=56+280=
=336
7×(8+40)=7×48=336
2)
3×53=3×(50+3)=3×50+3×3=
=150+9=159
2×87=2×(80+7)=2×80+2×7=
=160+14=174
5×34=5×(30+4)=5×30+5×4=
=150+20=170
3×48=3×(40+8)=3+40+3×8=
=120+24=144
2×64=2×(60+4)=2×60+2×4=
=120+8=138
4×83=4×(80+4)=4×80+4×3=
=320+12=332
В первом случае использовано:
Распределительное свойство умножения.
Чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и сложить полученные результаты.
(a + b) · c = a · c + b · c
Во втором случае второй
множитель т.е двузначное число разложили на десятки и единицы и тоже использовали распределительное свойство умножения.