Андрей загадал 31 31 натуральное число. Про них известно, что
27 27 чисел делятся на 2 2 ; 26 26 чисел делятся на 3 3 ; 25 25 чисел делятся на 4 4 ; 24 24 числа делятся на 5 5 . Какое наименьшее количество чисел может делиться на 60 60 ?
У Светы есть 4 варианта кофты и 3 варианта юбки. Это значит, что для каждой из 4х кофт она может надеть 3 разные юбки (это записывается как 4*3), и каждый раз получится новая комбинация. Тогда число комбинаций (назовём его n) будет равно
n = 3*4 = 12.
В правильности ответе можно убедиться, если просто перебрать все варианты:
(Пусть белая кофта — Б, зелёная — З, жёлтая — Ж, красная — К. Серая юбка — Се, чёрная — Ч, синяя — Си).
Члены арифметической прогрессии обозначим An, геометрической Bn. Тогда имеем: 13A1+78d=130(из формулы суммы первых членов арифметической прогрессии Sn=((2A1+d(n-1))/2)*n), что равносильно A1+6d=10
A4=A1+3d=B1 A10=A1+9d=B1*q A7=A1+6d=B1*q^2
B1*q^2=10 B1+3d=10 B1+6d=B1*q
B1=10/q^2(Выражаем B1 из первого уравнения) B1=10-3d(Выражаем B1 из второго уравнения) 3d=10-B1(теперь 3d из второго) 3d=10-10/q^2(подставляем сюда значение B1 из первого) 10+3d=10/q(подставляем вместо B1 соответственно 10-3d и 10/q^2) 10+10-10/q^2=10/q 20-10/q^2-10/q=0 20q^2-10q-10=0 2q^2-q-1=0 D=1+8=9 q1=(1-3)/4=-1/2 q2=(1+3)/4=1 Зная q, можно найти все остальное: B1*q^2=10 B1=10/q^2 3d=10-B1 Для q=-1/2 B1=40, 3d=10-40=-30, d=-10 Для q=1 B1=10, 3d=10-B1=0, d=0. Так как нам известно что первый член арифметической прогрессии не равен второму, то корень q=1 не подходит (так как d=0). Значит, d=-10. Найдем A1. A1+3d=B1 A1-30=40 A1=70. ответ: A1=70.
У Светы есть 4 варианта кофты и 3 варианта юбки. Это значит, что для каждой из 4х кофт она может надеть 3 разные юбки (это записывается как 4*3), и каждый раз получится новая комбинация. Тогда число комбинаций (назовём его n) будет равно
n = 3*4 = 12.
В правильности ответе можно убедиться, если просто перебрать все варианты:
(Пусть белая кофта — Б, зелёная — З, жёлтая — Ж, красная — К. Серая юбка — Се, чёрная — Ч, синяя — Си).
Тогда возможные варианты комбинации:
Б+Се, Б+Ч, Б+Си
З+Се, З+Ч, З+Си
Ж+Се, Ж+Ч, Ж+Си
К+Се, К+Ч, К+Си
Всего их 12, значит, полученный ранееответ верен.
Тогда имеем:
13A1+78d=130(из формулы суммы первых членов арифметической прогрессии Sn=((2A1+d(n-1))/2)*n), что равносильно
A1+6d=10
A4=A1+3d=B1
A10=A1+9d=B1*q
A7=A1+6d=B1*q^2
B1*q^2=10
B1+3d=10
B1+6d=B1*q
B1=10/q^2(Выражаем B1 из первого уравнения)
B1=10-3d(Выражаем B1 из второго уравнения)
3d=10-B1(теперь 3d из второго)
3d=10-10/q^2(подставляем сюда значение B1 из первого)
10+3d=10/q(подставляем вместо B1 соответственно 10-3d и 10/q^2)
10+10-10/q^2=10/q
20-10/q^2-10/q=0
20q^2-10q-10=0
2q^2-q-1=0
D=1+8=9
q1=(1-3)/4=-1/2
q2=(1+3)/4=1
Зная q, можно найти все остальное:
B1*q^2=10
B1=10/q^2
3d=10-B1
Для q=-1/2 B1=40, 3d=10-40=-30, d=-10
Для q=1 B1=10, 3d=10-B1=0, d=0.
Так как нам известно что первый член арифметической прогрессии не равен второму, то корень q=1 не подходит (так как d=0). Значит, d=-10.
Найдем A1.
A1+3d=B1
A1-30=40
A1=70.
ответ: A1=70.