Это очень просто, смотрите (рассматриваю только целые положительные числа) : число 54 заканчивается на четвёрку, соответственно мы можем рассматривать не 54, а 4- их степени на одну цифру заканчиваются. Теперь строим таблицу: 4^1 mod 10=4 4^2 mod 10=6 4^3 mod 10=4 (!) Зацикливание, значит 54^(2n) mod 10=6, а 54^(2n+1) mod 10=4. Короче говоря, если степень чётная, то 6, если нет, то 4. Аналогично вместо 28 рассмотрим 8 и построим таблицу: 8^1 mod 10=8 8^2 mod 10=4 8^3 mod 10=2 8^4 mod 10=6 8^5 mod 10=8 (!) Зацикливание. Значит если остаток от деления на 4 равен нулю, то 6, если один- то 8 и т. д. Т. к. 21 mod 4=1, у нас будет 8. Осталось сложить (8+4) mod 10=2
Свойство 1. Площадь фигуры является неотрицательным числом.
Свойство 2. Площади равных фигур равны.
Свойство 3. Если фигура разделена на две части, то площадь всей фигуры равна сумме площадей образовавшихся частей.
Еще нужна фигура, которую мы примем за эталон для измерения площади, ¾ единицу площади. При этом не следует забывать, что уже имеется единица измерения длины.
Свойство 4. За единицу измерения площади принимается площадь квадрата со стороной, равной 1 единице длины.
Другими словами, площадь квадрата со стороной, равной 1 единице длины, равна 1 единице площади, или 1 квадратной единице. Например, площадь квадрата со стороной 1 метр равна одному квадратному метру
Фигуры, имеющие равные площади, называтся равновеликими.
число 54 заканчивается на четвёрку, соответственно мы можем рассматривать не 54, а 4- их степени на одну цифру заканчиваются. Теперь строим таблицу:
4^1 mod 10=4
4^2 mod 10=6
4^3 mod 10=4 (!) Зацикливание, значит 54^(2n) mod 10=6, а 54^(2n+1) mod 10=4.
Короче говоря, если степень чётная, то 6, если нет, то 4.
Аналогично вместо 28 рассмотрим 8 и построим таблицу:
8^1 mod 10=8
8^2 mod 10=4
8^3 mod 10=2
8^4 mod 10=6
8^5 mod 10=8 (!) Зацикливание.
Значит если остаток от деления на 4 равен нулю, то 6, если один- то 8 и т. д.
Т. к. 21 mod 4=1, у нас будет 8.
Осталось сложить (8+4) mod 10=2
Свойство 2. Площади равных фигур равны.
Свойство 3. Если фигура разделена на две части, то площадь всей фигуры равна сумме площадей образовавшихся частей.
Еще нужна фигура, которую мы примем за эталон для измерения площади, ¾ единицу площади. При этом не следует забывать, что уже имеется единица измерения длины.
Свойство 4. За единицу измерения площади принимается площадь квадрата со стороной, равной 1 единице длины.
Другими словами, площадь квадрата со стороной, равной 1 единице длины, равна 1 единице площади, или 1 квадратной единице. Например, площадь квадрата со стороной 1 метр равна одному квадратному метру
Фигуры, имеющие равные площади, называтся равновеликими.