Аомогите
при оценивании регрессии y=a+b1x1+b2x2+b3x3+e были получены следующие результаты ( значения коэффициентов, в скобках указаны их t-статистики и p-value):
a: 1,85 (3,15; 0,002);
b1: 0,25 (2,05; 0,043);
b2: 1,02 (1,69; 0,094);
b3: -0,83 (-1,05; 0,296).
выберите верные выводы о значимости коэффициентов:
а) каждый из регрессоров является значимым на 10%-ом уровне значимости.
б) гипотеза о незначимости коэффициента при переменной х1 отвергается на 5%-ом уровне значимости
в) коэффициент при переменной х2 является незначимым на 10%-ом уровне значимости.
Пошаговое объяснение:
Получается в итоге у него осталось 16 арбузов. Значит 16+10=26 арбузов это 1/2 от того что у него осталось в третий день, значит после первого и второго дня у него было 26*2=52 арбуза. Во второй день он продал 1/3 остатка и 8 арбузов значит 52+8=60 - это 1-1/4=3/4 того что у него было после первого дня. Значит 60/(3/4)= 80 арбузов у него было после первого дня. В первый день он продал 1/3 всех арбузов и 6 арбузов значит 80+6=86 это и есть 2/3 всех арбузов . Тогда 86/(2/3)=129 арбузов он привез. А во второй день продал (129-43-6)/4+8=28 арбузов
Подробнее - на -
2401=(2+4+0+1)^4=7^4
Пошаговое объяснение:
Минимальная сумма цифр 1
Максимальная сумма цифр -36
Результат вычисления корня четвертой степени из исходного числа должен быть целым, поэтому смотрим в таблицу квадратов, где ищем среди чисел от 32 до 99 (результат ищем среди чисел от 1000 до 9999), такие, что они бы сами были квадрата со целых чисел. Находим: 36, 49, 81.
Получаем 1296, 2401 и 6561. Теперь суммируем цифры каждого числа в отдельности и возводим в 4 степень, сравниваем результат.
Нехитрыми вычислениями находим ответ: 2401=(2+4+0+1)^4=7^4