Авто ихав 0.9год по асвальтний дороге и 0,6 год по грунтовий проихала всього 93,6км.з якою швидкистю12 рухався авто по асвальтний дороге якщо по грунтовий ихав зи шкидкистю 48год
Если известны величины двух углов и длина одной сторон треугольника, то длины двух остальных сторон удобнее всего находить воспользовавшись теоремой синусов: отношение синусов углов треугольника к длинам противолежащих сторон равны между собой.
sinA/a=sinB/b=sinC/с, где:
a, b, c – длины сторон треугольника, а A, B, C – величины противолежащих углов.
Какие именно углы треугольника известны – не важно, так как, воспользовавшись тем фактом, что сумма углов треугольника равна 180 градусов, можно легко узнать величину неизвестного угла.
То есть, например, если известны величины углов А и С и длина стороны а, то длина стороны с будет:
sinA/a=sinB/b=sinC/с, где:
a, b, c – длины сторон треугольника, а A, B, C – величины противолежащих углов.
Какие именно углы треугольника известны – не важно, так как, воспользовавшись тем фактом, что сумма углов треугольника равна 180 градусов, можно легко узнать величину неизвестного угла.
То есть, например, если известны величины углов А и С и длина стороны а, то длина стороны с будет:
с=а*sinC/sinA
Пошаговое объяснение:
2sin²x - 3sinx + 1 = 0.
Это квадратное уравнение относительно переменной sinx.
Заменим основную переменную.
sinx = t, где -1 ≤ t ≤ 1, тогда sin²x = t².
Получим следующее квадратное уравнение:
2t² - 3t + 1 = 0.
Решим его используя дискриминант квадратного уравнения:
D = 32 - 4 • 2 • 1 = 9 - 8 = 1;
t1 = (3 + 1) / 4 = 1, удовлетворяет условию -1 ≤ t ≤ 1;
t2 = (3 - 1) / 4 = 1 / 2, удовлетворяет условию -1 ≤ t ≤ 1.
Делаем обратную замену переменной:
sinx = 1 или sinx = 1 / 2;
x1 = п/2 + 2пk, где k ∈ Z;
или:
x2 = п/6 + 2пk, где k ∈ Z;
x3 = 5п/6 + 2пk, где k ∈ Z.