Автобус выехал из пункта а в пункт б расстояние между которыми 40 километров. возвращаясь обратно из б в а, он ехал со скоростью на 10 км/ч меньшей. поэтому на обратный путь он затратил на 20 минут больше, чем на путь от a до b с какой скоростью ехал автобус из б в а
x- скорость на пути из А в Б, тогда скорость из Б в А (х-10).
20 минут= 1/3 часа.
\frac{40}{x-10}- \frac{40}{x}= \frac{1}{3}
40x-40x+400=1/3 ( x^{2} -10x)
1/3x^{2}-10/3x-400=0
13x2 - 103x - 400 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-10/3)2 - 4·13·(-400) = 1009 + 16003 = 49009
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 10/3 - √4900/92·(1/3) = 10/3 - 70/32/3 = -202/3 = -30
x2 = 10/3 + √4900/92·(1/3) = 10/3 + 70/32/3 = 80/32/3 = 40
40-10=30