На циферблате имеется 60 делений, на которые приходится 360 градусов. Значит, когда стрелка пройдёт 1 деление, то она переместиться на 360:60=6 градусов. Минутная стрелка за 15 мин пройдёт 6*15=90 градусов. Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений. 5 делений - 1 час (60 мин) х делений - 15 минут х=5*15:60=1,25 (делений) Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут): 1 деление - 6 градусов 1,25 делений - х градусов х=1,25*6:1=7,5 (градусов) Угол между минутной и часовой стрелками составляет 90-7,5=82,5 градусов=82 градуса 30 минут
Преобразуем уравнение sin x = 2 cos x . Рассмотрим те x, для которых cos x = 0 (x = π/2 + πn, n принадлежит Z). Для этих x sin x = ±1. Подставим cos x = 0 и sin x = ±1 в исходное уравнение. Получаем ±1=0.(неверное числовое равенство). Следовательно, эти x не являются корнями исходного уравнения. Значит, cos x ≠ 0. Разделим обе части уравнения на cos x ≠ 0, имеем tg x = 2, x = arctg 2 + π n , n принадлежит Z.
2. 2sin x-cos x =0
Преобразуем уравнение 2sin x = cos x .
tg x = 1/2, x = arctg 1/2 + π n , n принадлежит Z.
3. 2sin x-3 cos x=0
Преобразуем уравнение 2sin x = 3cos x .
tg x = 3/2, x = arctg 3/2 + π n , n принадлежит Z.
Минутная стрелка за 15 мин пройдёт 6*15=90 градусов.
Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений.
5 делений - 1 час (60 мин)
х делений - 15 минут х=5*15:60=1,25 (делений)
Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут):
1 деление - 6 градусов
1,25 делений - х градусов х=1,25*6:1=7,5 (градусов)
Угол между минутной и часовой стрелками составляет
90-7,5=82,5 градусов=82 градуса 30 минут
1. sin x - 2 cos x=0
Преобразуем уравнение sin x = 2 cos x . Рассмотрим те x, для которых cos x = 0 (x = π/2 + πn, n принадлежит Z). Для этих x sin x = ±1. Подставим cos x = 0 и sin x = ±1 в исходное уравнение. Получаем ±1=0.(неверное числовое равенство). Следовательно, эти x не являются корнями исходного уравнения. Значит, cos x ≠ 0. Разделим обе части уравнения на cos x ≠ 0, имеем tg x = 2, x = arctg 2 + π n , n принадлежит Z.
2. 2sin x-cos x =0
Преобразуем уравнение 2sin x = cos x .
tg x = 1/2, x = arctg 1/2 + π n , n принадлежит Z.
3. 2sin x-3 cos x=0
Преобразуем уравнение 2sin x = 3cos x .
tg x = 3/2, x = arctg 3/2 + π n , n принадлежит Z.
Пошаговое объяснение: