Автомобиль ехал из села со средней скоростью 68,7 км в час. Обратно со скоростью 70 км ч. Найдите среднюю скорость автомобиля. ответ округлите до десятых
Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях из задания №799 определены такие тождества:
1) ab + 3c = 6) 3c + ab ( перестановка слагаемых);
2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок);
3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя);
4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
Нужно найти отношение (то есть поделить) общего числа бросков к числу попаданий для каждого баскетболиста и сравнить их. Проделаем это: I баскетболист Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: . II баскетболист Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово. Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях из задания №799 определены такие тождества:
1) ab + 3c = 6) 3c + ab ( перестановка слагаемых);
2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок);
3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя);
4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
I баскетболист
Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: .
II баскетболист
Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово.
Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.