В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
mrsmauriziodimauro
mrsmauriziodimauro
02.12.2021 22:42 •  Математика

Автотурист бірінші күні 120 км жүрді.бұл оңын екінші күнгі жүрген жолының 0,8-індей.автотурист екі күнде неше километр жол жүреді

Показать ответ
Ответ:
vitaly1552
vitaly1552
28.02.2023 04:21

1001.00

Пошаговое объяснение:

Все жители острова не могут быть лжецами, иначе каждый из них сказал бы правду. Возьмем некоторого рыцаря. Из его заявления вытекает, что лжецов на острове больше, чем (2001-1)/2=1000. Возьмем теперь некоторого лжеца. Его заяление ложно, поэтому кроме него не более половины жителей острова - лжецы. Это означает, что кроме него на острове не более 2000/2=1000 лжецов, т.е. вместе с ним лжецов не более 1001. Таким образом, из полученных оценок на число лжецов получаем, что единственная возможность - когда на острове ровно 1001 лжец.

0,0(0 оценок)
Ответ:
MoLNiyaStaR
MoLNiyaStaR
01.11.2021 07:19

ОДЗ:

\left \{ {{x+1+\frac{1}{x} 0} \atop {{x^2+1+\frac{1}{x^2}0 \atop{|2x-\frac{1}{2} |\neq 0}} \right.      \left \{ {\frac{x^2+x+1}{x} 0} \atop {{ x \in R \atop{x\neq \frac{1}{4} }} \right.   ⇒  x ∈( 0 ; \frac{1}{4} ) U ( \frac{1}{4};+\infty)

Если

|2x-\frac{1}{2} |1 логарифмическая функция возрастает, большему значению функции соответствует большее значение аргумента:  

\left \{ {{|2x-\frac{1}{2} |1} \atop {x+1+\frac{1}{x} \geq x^2+1+\frac{1}{x^2} }} \right.         \left \{ {{2x-\frac{1}{2} < -1 ; 2x-\frac{1}{2} 1 } \atop {x+\frac{1}{x} \geq(x+\frac{1}{x}) ^2-2 }} \right.   ⇒ замена переменной x+\frac{1}{x} =t

D=(-1)²-4·(-2)=9;  корни  t₁=1;  t₂=2

C учетом ОДЗ:

\left \{ {{x\frac{3}{4} } \atop {(x+\frac{1}{x}-1)(x+\frac{1}{x}-2)\leq 0 }} \right.   ⇒  x^2-2x+1 ≤0  ⇒  (x-1)²≤0    ⇒   x=1  

Если

0  логарифмическая функция убывает, большему значению функции соответствует меньшее значение аргумента:  

\left \{ {{0       \left \{ {{-1  ⇒ замена переменной x+\frac{1}{x} =t

D=(-1)²-4·(-2)=9;  корни  t₁=1;  t₂=2

C учетом ОДЗ:

\left \{ {{0    ⇒  x^2-2x+1 ≥0  ⇒(x-1)²≥0  x - любое

x \in (0; \frac{1}{4})\cup (\frac{1}{4}; \frac{3}{4})

О т в е т. x \in (0; \frac{1}{4})\cup (\frac{1}{4}; \frac{3}{4})\cup{1}

ОДЗ:

\left \{ {{x+1+\frac{1}{x} 0} \atop {{x^2+1+\frac{1}{x^2}0 \atop{|2x-\frac{1}{2} |\neq 0}} \right.      \left \{ {\frac{x^2+x+1}{x} 0} \atop {{ x \in R \atop{x\neq \frac{1}{4} }} \right.   ⇒  x ∈( 0 ; \frac{1}{4} ) U ( \frac{1}{4};+\infty)

Применяем метод рационализации логарифмических неравенств:

(|2x-\frac{1}{2}|-1)\cdot (x+1+\frac{1}{x}- x^2-1-\frac{1}{x})\geq 0

(|2x-\frac{1}{2}|-1)\cdot( (x+\frac{1}{x})^2-(x+\frac{1}{x})- 2)\leq 0

Решаем неравенство методом интервалов:

1)

|2x-\frac{1}{2}|-1= 0     ⇒      |2x-\frac{1}{2}|=1   ⇒

2x-\frac{1}{2}=-1          или               2x-\frac{1}{2}=1

x=-\frac{1}{4}   не входит в ОДЗ       или       x=\frac{3}{4}

2)(x+\frac{1}{x})^2-(x+\frac{1}{x})- 2=0

Замена   x+\frac{1}{x}=t

t^2-t-2=0

t_{1}=1   или    t_{2}=2

x+\frac{1}{x}=1    или   x+\frac{1}{x}=2

\frac{x^2-x+1}{x}=0    или   \frac{x^2-2x+1}{x}=0

нет корней    или    x=1

Расставляем знаки неравенства

(|2x-\frac{1}{2}|-1)\cdot( (x+\frac{1}{x})^2-(x+\frac{1}{x})- 2)\leq 0

на ОДЗ:

(0) _-___ ( \frac{1}{4} ) _____-____ ( \frac{3}{4} ) ____+_____  [1} ___+___

О т в е т.x \in (0; \frac{1}{4})\cup (\frac{1}{4}; \frac{3}{4})\cup{1}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота