Айрата и Гайси было 282 марки. У Гайси на 4 марки меньше, чем у Айрата. Айрат отдал другим одноклассникам некоторое количество марок, а Гайса отдал в два раза меньше, чем Айрат. Тогда у Гайси осталось марок в два раза больше, чем у Айрата. Сколько марок отдал Гайса?
Чтобы проверить данную задачу, можно составить уравнение, что послужит доказательством верности/неверности решения.
Возьмем за натуральное число @, тогда уравнение будет выглядеть как (@*B)*(@-B) = 111. В данном случае получаем несколько условий:
1) Число 111 состоит из возможных вариантов множителей 1 и 111
2) @>B, из пунктов 1 и 2 следует что возможный вариант уравнения выглядит как (111*1)*(111-1) что не равно 111.
Вывод : "НЕТ, не возможно"
M₁={1,2,3,7}, M₂={1,5,6,7}, M₃={3,4,5,7} (см. рисунок).
В ответе Миши будут названы цифры, стоящие в разрядах с соответствующими номерами.
Тогда та цифра, которая будет фигурировать во всех трех ответах Миши, находится в 7-ом разряде, т.к. s(7)=111 и с такой сигнатурой этот разряд единственный.
Та цифра, которая будет фигурировать в 1-ом и 2-ом, но не в 3-м ответе Миши находится в разряде с номером 1 (см. рисунок), т.к. s(1)=110 и опять, с этой сигнатурой имеется только один разряд.
Цифра, которая будет фигурировать, например в 3-м ответе Миши, но не в 1-ом и не во 2-ом, соответствует позиции 4, т.к. s(4)=001 и т.д. Итак, по ответам Миши мы определяем сигнатуру каждой упомянутой цифры (смотрим, в каких ответах эта цифра есть, а в каких ее нет), и поскольку сигнатура однозначно связана с номером разряда, мы определяем позицию этой цифры.
Заметим, что если бы число было записано в восьмеричной системе счисления, то Игорь мог бы определить все цифры при N=8, т.к. определив семь позиций у него оставалась бы одна не задействованная цифра на 8-ую позицию.