Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле:
Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС.
Находим стороны треугольника SDC:
DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549.
SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6.
Высота из вершины S является высотой пирамиды SО.
Находим её по формуле:
Подставим значения:
a b c p 2p
16.155494 15 6 18.577747 37.15549442
и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145.
Площадь основания пирамиды находим по формуле Герона:
a b c p 2p S
17 17 10.583005 22.291503 44.58300524 85.48684109.
Площадь основания можно выразить так:
S = 85.48684109 = √7308 = 6√(7*29).
Тогда получаем объём пирамиды:
V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Для решения данного линейного уравнения необходимо провести раскрытие скобок в левой его части.
0,4 * (1,3 + 5/9 * x) = 0,4 * 1,3 + 0,4 * 5/9 * x = 0,52 + 0,4 * 5/9 * x .
Во втором сомножителе десятичную дробь 0,4 заменяем на обыкновенную, проводим сокращение числителя и знаменателя на число 5.
0,52 + 0,4 * 5/9 * x = 0,52 + 4/10 * 5/9 * x = 0,52 + 2/5 * 5/9 * x = 0,52 + 2/9 * х.
После преобразования левой части уравнение примет вид.
0,52 + 2/9 * х = 7/9 * x - 1,48.
Сомножители с неизвестным х переносим в левую часть уравнения, а свободные члены в правую.
2/9 * х - 7/9 * x = -1,48 - 0,52.
- 5/9 * x = -2.
х = 2 * 9/5.
х = 18/5 = 3,6.
ответ. 3,6.