В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
iljakrainik
iljakrainik
08.04.2020 07:09 •  Математика

Більша основа трапеції вдвічі більша від меншої основи. Через точку перетину діагоналей проведено пряму, яка паралельна основам трапеції.  

Обчисли висоту отриманих трапецій, якщо висота даної трапеції дорівнює 21 см.

Показать ответ
Ответ:
Тэхен10
Тэхен10
20.05.2020 20:59
Биссектриса треугольника лежит между его высотой и медианой, которые проведены из той же вершины.

Поэтому K лежит на отрезке MH.

1.

Рассмотри ∠ACH и ∠ABC:

CA⊥BA и CH⊥BH по условию;

∠ACH = ∠ABC, как углы с взаимно перпендикулярными сторонами.

Медиана прямоугольного треугольника, проведённая к гипотенузе, равна половине гипотенузы.

Поэтому CM = BM, тогда ΔBMC - равнобедренный.

Углы при основании равнобедренного треугольника равны.

Поэтому ∠MBC = ∠MCB, откуда ∠ACH = ∠MCB (т.к. ∠ACH = ∠MBC).

∠ACK = ∠BCK, как углы при биссектрисе;

∠ACH = ∠MCB;

Тогда ∠ACK - ∠ACH = ∠BCK - ∠MCB;

∠HCK = ∠MCK.

Биссектриса треугольника делит сторону треугольника на отрезки, пропорциональные прилежащим сторонам.

2.

Рассмотрим ΔMCH:

CK - биссектриса MCH, поскольку ∠HCK = ∠MCK;

Тогда справедливо равенство \dfrac{CM}{CH} =\dfrac{MK}{KH} =\dfrac{5}{3};

Пусть CM = 5x, тогда CH = 3x;

HM = HK+KM = 3+5 = 8;

ΔMCH - прямоугольный (CH⊥MH ⇒ ∠CHM = 90°);

Тогда по теореме Пифагора получим:

CH²+HM² = CM²;

(3x)²+8² = (5x)²;

9x²+64 = 25x²;

64 = 16x²;

x² = 64:16 = 2²;

x = 2.

CM = 5x = 5·2 = 10;

CH = 3x = 3·2 = 6.

3.

CM = BM = MA;

MA = 10;

AB = 2·MA = 2·10 = 20;

AH = MA-HM = 10-8 = 2.

4.

Рассмотрим ΔCHA:

∠CHA = 90°;  AH = 2;  CH = 6;

По теореме Пифагора найдём AC:

AC² = CH²+AH² = 6²+2² = 36+4 = 2²·10;

AC = 2√10.

5.

Рассмотрим ΔABC:

∠ACB = 90°;  AC = 10√2;  AB = 20;

По теореме Пифагора надём BC:

BC² = AB²-AC² = 20²-40 = 400-40 = 6²·10;

BC = 6√10.

6.

Рассмотрим ΔCHK:

∠CHK = 90°;  CH = 6;  HK = 3;

По теореме Пифагора найдём CK:

CK² = CH²+HK² = 6²+3² = 36+9 = 3²·5;

CK = 3√5.

ответ: AB = 20;  BC = 6√10;  AC = 2√10;  CK = 3√5.


30 . из вершины прямого угла c треугольника abc проведены высота ch, биссектриса ck и медиана cm. и
0,0(0 оценок)
Ответ:
нэлли1987
нэлли1987
20.05.2020 20:59
Биссектриса треугольника лежит между его высотой и медианой, которые проведены из той же вершины.

Поэтому K лежит на отрезке MH.

1.

Рассмотри ∠ACH и ∠ABC:

CA⊥BA и CH⊥BH по условию;

∠ACH = ∠ABC, как углы с взаимно перпендикулярными сторонами.

Медиана прямоугольного треугольника, проведённая к гипотенузе, равна половине гипотенузы.

Поэтому CM = BM, тогда ΔBMC - равнобедренный.

Углы при основании равнобедренного треугольника равны.

Поэтому ∠MBC = ∠MCB, откуда ∠ACH = ∠MCB (т.к. ∠ACH = ∠MBC).

∠ACK = ∠BCK, как углы при биссектрисе;

∠ACH = ∠MCB;

Тогда ∠ACK - ∠ACH = ∠BCK - ∠MCB;

∠HCK = ∠MCK.

Биссектриса треугольника делит сторону треугольника на отрезки, пропорциональные прилежащим сторонам.

2.

Рассмотрим ΔMCH:

CK - биссектриса MCH, поскольку ∠HCK = ∠MCK;

Тогда справедливо равенство \dfrac{CM}{CH} =\dfrac{MK}{KH} =\dfrac{5}{3};

Пусть CM = 5x, тогда CH = 3x;

HM = HK+KM = 3+5 = 8;

ΔMCH - прямоугольный (CH⊥MH ⇒ ∠CHM = 90°);

Тогда по теореме Пифагора получим:

CH²+HM² = CM²;

(3x)²+8² = (5x)²;

9x²+64 = 25x²;

64 = 16x²;

x² = 64:16 = 2²;

x = 2.

CM = 5x = 5·2 = 10;

CH = 3x = 3·2 = 6.

3.

CM = BM = MA;

MA = 10;

AB = 2·MA = 2·10 = 20;

AH = MA-HM = 10-8 = 2.

4.

Рассмотрим ΔCHA:

∠CHA = 90°;  AH = 2;  CH = 6;

По теореме Пифагора найдём AC:

AC² = CH²+AH² = 6²+2² = 36+4 = 2²·10;

AC = 2√10.

5.

Рассмотрим ΔABC:

∠ACB = 90°;  AC = 10√2;  AB = 20;

По теореме Пифагора надём BC:

BC² = AB²-AC² = 20²-40 = 400-40 = 6²·10;

BC = 6√10.

6.

Рассмотрим ΔCHK:

∠CHK = 90°;  CH = 6;  HK = 3;

По теореме Пифагора найдём CK:

CK² = CH²+HK² = 6²+3² = 36+9 = 3²·5;

CK = 3√5.

ответ: AB = 20;  BC = 6√10;  AC = 2√10;  CK = 3√5.


30 . из вершины прямого угла c треугольника abc проведены высота ch, биссектриса ck и медиана cm. и
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота