№38. отправление 20ч38мин. до 24:00 часов, т.е. до следующего дня осталось. 3ч22мин. время в пути 12ч 20мин. 12ч20мин- 3ч22мин=8ч58мин- время прибытия. №67. отправление 20ч12мин. до 24:00 часов, т.е. до следующего дня осталось. 3ч48мин. время в пути 13ч 05мин. 13ч05мин- 3ч48мин=9ч17мин- время прибытия. №210. отправление 20ч35мин. до 24:00 часов, т.е. до следующего дня осталось. 3ч25мин. время в пути 12ч 15мин. 12ч15мин- 3ч25мин=8ч50мин- время прибытия. ответ: поезд №210. 8ч50мин- время прибытия. , но не позднее девяти часов походит №38 8ч58мин- время прибытия.
Из уравнений прямой находим выражения для t: t=(x+7)/3, t=(4-y)/2, t=(z-4)/3. Отсюда следует каноническое уравнение прямой:
(x-7)/3=(4-y)/2=(z-4)/3
В этом уравнении числа 3,2,3 - это координаты направляющего вектора данной прямой, т.е. вектора, параллельного этой прямой. Уравнение имеет вид (x-x0)/a=(y-y0)/b=(z-z0)/c, где x0,y0,z0 - координаты точки, принадлежащий прямой. Так как по условию точка М принадлежит прямой, то x0=2, y0=3,z0=-5. Тогда уравнение прямой имеет вид: (x-2)/a=(y-3)/b=(z+5)/c, где a,b,c - координаты направляющего вектора этой прямой. Но так как по условию эта прямая параллельна данной, то и её направляющий вектор параллелен направляющему вектору данной прямой, а потому можно взять a=3,b=2,c=3. Тогда искомое уравнение имеет вид: (x-2)/3=(y-3)/2=(z+5)/3. ответ: (x-2)/3=(y-3)/2=(z+5)/3.
№67. отправление 20ч12мин. до 24:00 часов, т.е. до следующего дня осталось. 3ч48мин. время в пути 13ч 05мин. 13ч05мин- 3ч48мин=9ч17мин- время прибытия.
№210. отправление 20ч35мин. до 24:00 часов, т.е. до следующего дня осталось. 3ч25мин. время в пути 12ч 15мин. 12ч15мин- 3ч25мин=8ч50мин- время прибытия.
ответ: поезд №210. 8ч50мин- время прибытия. , но не позднее девяти часов походит №38 8ч58мин- время прибытия.
(x-7)/3=(4-y)/2=(z-4)/3
В этом уравнении числа 3,2,3 - это координаты направляющего вектора данной прямой, т.е. вектора, параллельного этой прямой. Уравнение имеет вид (x-x0)/a=(y-y0)/b=(z-z0)/c, где x0,y0,z0 - координаты точки, принадлежащий прямой. Так как по условию точка М принадлежит прямой, то x0=2, y0=3,z0=-5. Тогда уравнение прямой имеет вид:
(x-2)/a=(y-3)/b=(z+5)/c, где a,b,c - координаты направляющего вектора этой прямой. Но так как по условию эта прямая параллельна данной, то и её направляющий вектор параллелен направляющему вектору данной прямой, а потому можно взять a=3,b=2,c=3. Тогда искомое уравнение имеет вид: (x-2)/3=(y-3)/2=(z+5)/3. ответ: (x-2)/3=(y-3)/2=(z+5)/3.