Бірлік кесінді ретінде ұзындығы 1 см кесіндіні алып, координаталық сәуле сызыңдар. Оның бойында 4, 7, 9, 11 сандарын кескіндейтін сәйкесінше Е. Н. К., М нүктелерін белгілеңдер. FH+KM=?
Видимо в условии должно быть "является арифметической прогрессией". попробуем доказать, обозначим члены последовательности через х и найдем формулу двух соседних ее членов х(n+1) и x(n) очевидно что x(n+1)=S(n+1)-S(n) и х(n)=S(n)-S(n-1) (начиная с n=2) x(n+1)=S(n+1)-S(n) = =5(n+1)²-7(n+1)+3-[5n²-7n+3]=5n²+10n+5-7n-7+3-5n²+7n-3=10n-2 x(n)=S(n)-S(n-1)=5n²-7n+3-[5(n-1)²-7(n-1)+3]= после сокращений получается = 10n-12 найдем разность между двумя соседними членами последовательности x(n+1)-x(n)=10n-2-(10n-12)=10n-2-10n+12=10 получается что разность между двумя соседними членами последовательности =10 то есть каждый последующий получается прибавлением к предыдущему одного и того же числа 10, значит это арифметическая прогрессия. но это выполняется для членов начиная со второго. то есть в полном объеме все-таки не арифметическая
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
обозначим члены последовательности через х и найдем формулу двух соседних ее членов х(n+1) и x(n)
очевидно что x(n+1)=S(n+1)-S(n) и х(n)=S(n)-S(n-1) (начиная с n=2)
x(n+1)=S(n+1)-S(n) = =5(n+1)²-7(n+1)+3-[5n²-7n+3]=5n²+10n+5-7n-7+3-5n²+7n-3=10n-2
x(n)=S(n)-S(n-1)=5n²-7n+3-[5(n-1)²-7(n-1)+3]= после сокращений получается = 10n-12
найдем разность между двумя соседними членами последовательности
x(n+1)-x(n)=10n-2-(10n-12)=10n-2-10n+12=10
получается что разность между двумя соседними членами последовательности =10 то есть каждый последующий получается прибавлением к предыдущему одного и того же числа 10, значит это арифметическая прогрессия. но это выполняется для членов начиная со второго. то есть в полном объеме все-таки не арифметическая
190 прямых
Пошаговое объяснение:
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
C₂₀²=20!/((20-2)!2!)=19*20/2=190.