В ∆ АDС две стороны равны (дано), ∠ ADC=60°=> ∆ ADC – равнобедренный и равносторонний ( т.к. углы при основании АС равны (180°-60°):2= 60°) , ⇒ АС=АD=АВ. Поэтому ∆ АВС - равнобедренный, углы при основании ВС равны: ∠АВС=∠ВСА=65°.
Из суммы углов треугольника ∠ВАС=180°-2•65°=50°.
В ∆ BAD ∠ВАD=∠BAC+∠CAD=50°+60°=110° . Так как ∆ ВАD – равнобедренный ( АВ=АD), углы при основании ВD равны. Из суммы углов треугольника ∠АВD=(180°-110°):2=35°
ответ: 35°
Пошаговое объяснение:
Сделаем рисунок согласно условию.
В ∆ АDС две стороны равны (дано), ∠ ADC=60°=> ∆ ADC – равнобедренный и равносторонний ( т.к. углы при основании АС равны (180°-60°):2= 60°) , ⇒ АС=АD=АВ. Поэтому ∆ АВС - равнобедренный, углы при основании ВС равны: ∠АВС=∠ВСА=65°.
Из суммы углов треугольника ∠ВАС=180°-2•65°=50°.
В ∆ BAD ∠ВАD=∠BAC+∠CAD=50°+60°=110° . Так как ∆ ВАD – равнобедренный ( АВ=АD), углы при основании ВD равны. Из суммы углов треугольника ∠АВD=(180°-110°):2=35°