В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
35465
35465
05.04.2021 12:36 •  Математика

баки 6 Л В каждую минуту в него влияют через кран по четыре с половиной Л 1 записать зависимость между игроком числом литров керосина в баке и времени их в течение которого открыт кран вычертить график изменения Y отдавая их значения от 1 до 10 через сколько минут будет наполнен если он вмещает 100 л керосина​

Показать ответ
Ответ:
nastamalysheva
nastamalysheva
08.12.2022 17:02
ответ Разложение левой части уравнения на множители*Решим уравнениех2 + 10х - 24 = 0.Разложим левую часть на множители:х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).Следовательно, уравнение можно переписать так:(х + 12)(х - 2) = 0Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х Метод выделения полного квадрата*Решим уравнение х2 + 6х - 7 = 0.Выделим в левой части полный квадрат.Для этого запишем выражение х2 + 6х в следующем виде:х2 + 6х = х2 + 2• х • 3.В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так какх2 + 2• х • 3 + 32 = (х + 3)2.Преобразуем теперь левую часть уравнениях2 + 6х - 7 = 0,прибавляя к ней и вычитая 32. Имеем:х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.Таким образом, данное уравнение можно записать так:(х + 3)2 - 16 =0, (х + 3)2 = 16.Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х Решение квадратных уравнений по формуле*Умножим обе части уравненияах2 + bх + с = 0, а ≠ 0на 4а и последовательно имеем:4а2х2 + 4аbх + 4ас = 0,((2ах)2 + 2ах Решение уравнений с использованием теоремы Виета*Как известно, приведенное квадратное уравнение имеет видх2 + px + c = 0. (1)Его корни удовлетворяют теореме Виета, которая при а =1 имеет видx1 +x2 = - pОтсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней)Пошаговое объяснение:*Примеры к а) Решим уравнение: 4х2 + 7х + 3 = 0.а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,D > 0, два разных корня;Таким образом, в случае положительного дискриминанта, т.е. приb2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.б) Решим уравнение: 4х2 - 4х + 1 = 0,а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,D = 0, один корень;Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнениеах2 + bх + с = 0 имеет единственный корень,в) Решим уравнение: 2х2 + 3х + 4 = 0,а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.Данное уравнение корней не имеет.Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0,уравнение ах2 + bх + с = 0 не имеет корней.Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент*Примеру к а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.Например,x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0;x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0.б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .Например,x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0;x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.сделай лучший ответ
0,0(0 оценок)
Ответ:
Quartz11
Quartz11
06.05.2020 23:40

Пошаговое объяснение:

Найдите 3/4 от числа 5/12

5/12*3/4 = 5/16

Найдите число, 2/9 которого равны 2 2/3

2 2/3 : 2/9 = 8/3 * 9/2 = 12

Найдите значение выражения

4/7∙ 2 1/3 : 5/12 = 4/7 * 7/3 * 12/5 = 4/3 * 12/5 = 16/5 = 3 1/5

Решите уравнение

14(y-5 2/7)=38

14(y - 37/7) = 38

14y - 74 = 38

14y = 38+74

14y = 112

y = 112:14

y = 8

30 * 2/3 = 20км во второй день

20 : 4/5 = 20 * 5/4 = 25км в третий день

30+20+25=75км туристы за три дня

8 3/4 : 1 1/6 = 35/4 : 7/6 = 35/4 * 6/7 = 15/2 = 7 1/2 км/ч скорость второго велосипедиста

8 3/4 + 7 1/2 = 8 3/4 + 7 2/4 = 15 5/4 = 16 1/4км/ч скорость сближения велосипедистов

26 : 16 1/4 = 26 : 65/4 = 26 * 4/65 = 104/65 = 1 39/65 = 1 3/5ч

через столько времени после начала движения они встретились

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота