Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Відповідь:
Покрокове пояснення:
Дано: О - центр кола. KM, NP - хорди (KM не паралельне NC).
КМ = ND. А - середина КМ. В - середина NP.
Довести: ZOAB = ZOBA.
Доведення:
Виконаємо додаткові побудови: радіуси ОК, ОМ, ON, OP.
Розглянемо ∆КОМ i ∆NОР.
КО = ОМ та N0 = ОР - радіуси, тобто КО = N0 = ОМ = ОР (за побудовою).
За умовою КМ = NP.
За III ознакою piвностi трикутників маємо: ∆КОМ = ∆NOP.
Звідси маємо: ∟OKM = ∟OPN, ∟OMK = ∟ONP.
За умовою А - середина КМ, отже, КА = КМ = 1/2КМ.
В - середина NP, отже, BN = ВР = 1/2NP.
Розглянемо ∆АОК i ∆ОРВ.
Якщо АК = РВ; OK = OP, ∟OKM = ∟OPN.
За I ознакою piвностi трикутників маємо: ∆ОАК = ∆ОВР.
Звідси маємо: ОА = ОВ.
Тобто ∆ОАВ - р1внобедрений.
За властивістю кутів при основi piвнобедреного трикутника маємо: ∟OAB = ∟OBA.
Доведено.
Обозначим центр окружности сечения O' и ее радиус r.
Расстояние от O до O' равно ρ.
Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы.
Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R.
При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
Рассмотрим треугольник OO'A.
OO' ⊥ AB, OA = R, O'A = r, OO' = ρ
По теореме Пифагора имеем равенство: R² = r² + ρ² ⇒ r² = R² - ρ².
r² = 14² - 8² = (14-8)(14+8) = 6*22 = 12*11.
r = √(12*11) = 2√33.
L = 2πr = 2·2√33·π = 4π√33