Пусть прямая а лежит в плоскости α , прямая в лежит в плоскости β. Прямые а и в параллельны. Плоскости α и β пересекаются по прямой с. Прямая а и с лежат в пл.α.Они параллельны, так как прямая а || пл.β (сущуствует прямая b в плоскости β, параллельная a), то прямая а не пересекается с прямой с , лежащей в плоскости β (как линия пересечения пл.α и пл. β), а значит a||c. Аналогично, прямая b || пл.α, так как существует в этой плоскости прямая a, параллельная b.Значит, прямая b не имеет общих точек с пл.α и с прямой с, лежащей в плоскости α ( прямая с - линия пересечения двух плоскостей-одновременно принадлежит и пл.α и пл. β).Поэтому b||c.
1. 12x всегда делится на 2. Сумма четного числа с каким-то будет четной, если второе число тоже будет четным. Т.е. 45y должно быть четным, т.е. y должно быть четным. Т.о. в качестве x можно взять любое число, а в качестве y - любое четное число. Три пары: (1, 2), (2, 4), (117, 65536).
2. 45y всегда делится на 5. Сумма не будет делиться на 5, если 12x не будет делиться на 5. Т.к. 5 и 12 взаимно просты, то выражение 12x делится на 5 только в том случае, если x делится на 5. Значит, в качестве x нужно взять любое число, не делящееся на 5, а в качестве y - любое число. Три пары: (1, 1), (2, 2), (117, 65536).
3. 12x делится на 2 при любом x. Значит, (см.1) y должно быть четным. 45y делится на 5 при любом y. Значит, (см.2) x должно делиться на 5. Три пары: (5, 2), (10, 4), (65535, 65536).
4. x не должно делиться на 5, y должно быть нечетным. Три пары: (1, 1), (2, 3), (117, 65535).
Прямая а и с лежат в пл.α.Они параллельны, так как прямая а || пл.β (сущуствует прямая b в плоскости β, параллельная a), то прямая а не пересекается с прямой с , лежащей в плоскости β (как линия пересечения пл.α и пл. β), а значит a||c. Аналогично, прямая b || пл.α, так как существует в этой плоскости прямая a, параллельная b.Значит, прямая b не имеет общих точек с пл.α и с прямой с, лежащей в плоскости α ( прямая с - линия пересечения двух плоскостей-одновременно принадлежит и пл.α и пл. β).Поэтому b||c.
Т.е. 45y должно быть четным, т.е. y должно быть четным.
Т.о. в качестве x можно взять любое число, а в качестве y - любое четное число.
Три пары: (1, 2), (2, 4), (117, 65536).
2. 45y всегда делится на 5. Сумма не будет делиться на 5, если 12x не будет делиться на 5. Т.к. 5 и 12 взаимно просты, то выражение 12x делится на 5 только в том случае, если x делится на 5.
Значит, в качестве x нужно взять любое число, не делящееся на 5, а в качестве y - любое число.
Три пары: (1, 1), (2, 2), (117, 65536).
3. 12x делится на 2 при любом x. Значит, (см.1) y должно быть четным.
45y делится на 5 при любом y. Значит, (см.2) x должно делиться на 5.
Три пары: (5, 2), (10, 4), (65535, 65536).
4. x не должно делиться на 5, y должно быть нечетным.
Три пары: (1, 1), (2, 3), (117, 65535).