Барон Карл Фридрих Иероним фон Мю́нхаузен славен не тем, что летал на Луну, а тем, что никогда не врёт. Остановившись перед портретами своих блестящих предков он поведал нам, что:Трое из них умели летать на ядре, одиннадцать — вытащили себя за волосы из болота, восемнадцать — стреляли уток через дымоход и двенадцать — охотились при вишневых косточек. Все предки обладали хотя бы двумя умениями и никто не обладал сразу тремя.
В задаче не сказано какой формы будут клумбы - вот и задумался садовник. Рисунок к задаче в приложении.
Если стороны равны - а , то это ромб или квадрат. Тогда периметр по формуле: Р = 4*а.
Если стороны разные: a и b, то это параллелограмм или прямоугольник и периметр по формуле: P = 2*(a + b).
1) а = b = 4 м. Р1 = 4*а = 4*4 = 16 м - периметр первой клумбы.
2) Р2 = 2*(6 + 4) = 2*10 = 20 м - периметр второй клумбы
3) Р3 = 2*(7 + 2) = 2*9 = 18 м - периметр третьей клумбы.
4) Р4 = 2*(5 + 3) = 2*8 = 16 м - периметр четвёртой клумбы.
И теперь длину изгороди на все четыре клумбы - сумма отдельных.
5) Р = 16+20+18+16 = 70 м на все четыре клумбы - ОТВЕТ
Пошаговое Обозначим через а цифру десятков этого двузначного числа.
Тогда цифра единиц этого число должна быть равной 2а, само двузначное число можно будет записать в виде 10а + 2а = 12а, а то число, которое получается из исходного путем перестановки его цифр — в виде 2а * 10 + а = 20а + а = 21а.
В исходных данных к данному заданию сообщается, что полученное путем перестановки цифр число больше исходного на 27, следовательно, можем составить следующее уравнение:
21а = 27 + 12а,
решая которое, получаем:
21а - 12а = 27;
9а = 27;
а = 27 / 9 = 3.
Следовательно, искомое число это 36.
ответ: 36.объяснение: