В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Биссектриса острого угла равнобокой трапеции делит боковую сторону на отрезки 10 и 5, считая от большего основания. если это основание равно 22, то площадь трапеции

Показать ответ
Ответ:
Olia234566
Olia234566
24.05.2020 07:51

Дана трапеция АВСД. Основание АД=22. ДМ - биссектриса, точка М - точка пересечения биссектрисы и боковой стороны АВ, АМ=10, МВ=5

Проведём прямую МК параллельную АД, /КМД=/МДА - накрест лежащие. /КДМ=/МДА, т.к. ДМ - биссектриса, следовательно,   /КДМ=/КМД, т.е. треугольник МКД равнобедренный (по признаку), имеем МК=КД, но КД=АМ=10, то МК=10

МН - высота треугольника АМД, в нём АН=(22-10):2=6 (по свойству оснований равнобокой трапеции). По Т.Пифагора находим МН как катет прямоугольного треугольника АМН с гипотенузой 10 и другим катетом 6, МН=8.ВО перпендикуляр к МК. Треугольники АМН и МВО подобны с к=2, т.е. ВО=8:2=4, МО=6:2=3.

Имеем: высота трапеции равна 8+4=12, второе основание ВС=10-3·2=4  (по свойству оснований равнобокой трапеции)

Площадь трапеции равна полусумме оснований умноженная на высоту, т.е. S=(4+22):2·12=156

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота