В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Нуб0001
Нуб0001
09.04.2021 22:35 •  Математика

Буклеты трех друзей. один день раздавал 598 буклетов, другой раздавал 736 буклетов, но третий не хотел раскрывать его. но оба друга быстро подсчитали, в общей сложности 1739 буклетов. каково было выступление третьего мальчика? ​

Показать ответ
Ответ:
Nastya125473333
Nastya125473333
27.08.2022 21:59

Пусть первая прямая имеет угловой коэффициент k_1=\mathrm{tg}\ \alpha, а вторая прямая имеет угловой коэффициент k_2=\mathrm{tg}\ \beta, где \alpha и \beta - соответствующие углы наклона прямых к положительному направлению оси Ox.

Рассмотрим угол между этими прямыми. Пусть \alpha \beta, тогда он равен \alpha -\beta. Найдем соотношение между этим углом и угловыми коэффициентами прямых. Используем формулу тангенса разности:

\mathrm{tg}(\alpha -\beta)=\dfrac{\mathrm{tg}\ \alpha-\mathrm{tg}\ \beta }{1+\mathrm{tg}\ \alpha\ \mathrm{tg}\ \beta } =\dfrac{k_1-k_2 }{1+k_1k_2 }

Так как мы хотим получить условие перпендикулярности двух прямых, то считаем угол между прямыми \alpha -\beta=90^\circ.

\mathrm{tg}90^\circ=\dfrac{k_1-k_2 }{1+k_1k_2 }

Тангенс 90 градусов не определен, но можно сказать что он стремится к бесконечности к стремлении аргумента к 90 градусам.

\dfrac{k_1-k_2 }{1+k_1k_2 }\rightarrow \infty

Но если дробь стремится к бесконечности, то знаменатель стремится к нулю.

1+k_1k_2 \rightarrow 0

В пределе знаменатель равен нулю. Тогда получим:

1+k_1k_2 =0

\boxed{k_1k_2 =-1}

Можно выразить один из коэффициентов:

\boxed{k_1 =-\dfrac{1}{k_2} }

Тогда формулируется легкое правило: Две прямые перпендикулярны, когда их угловые коэффициенты являются противоположными обратными числами.

0,0(0 оценок)
Ответ:
zzzzzzz03
zzzzzzz03
06.07.2020 05:26

Доказательство теоремы Пифагора

Пусть треугольник ABC - прямоугольный треугольник с прямым углом C (рис. 2).

Проведём высоту из вершины C на гипотенузу AB, основание высоты обозначим как H .

Прямоугольный треугольник ACH подобен треугольнику ABC по двум углам ( ∠ACB=∠CHA=90∘, ∠A - общий). Аналогично, треугольник CBH подобен ABC .

Введя обозначения

BC=a,AC=b,AB=c

из подобия треугольников получаем, что

ac=HBa,bc=AHb

Отсюда имеем, что

a2=c⋅HB,b2=c⋅AH

Сложив полученные равенства, получаем

a2+b2=c⋅HB+c⋅AH

a2+b2=c⋅(HB+AH)

a2+b2=c⋅AB

a2+b2=c⋅c

a2+b2=c2

Что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота