бысто ответьте У Халиды 15 кур и 7 уток, при этом вес утки на 440 граммов больше веба курицы. Определите вес утки и вес курицы, зная, что средний вес птиц Халиды равен 4,2 килоrpамма.
Чтобы найти угол между большей боковой стороной и большей основой трапеции, можно воспользоваться теоремой косинусов.
Обозначим большую основу трапеции как основание A, меньшую основу как основание B, большую боковую сторону как сторону C, и меньшую боковую сторону как сторону D.
Из условия задачи, известны следующие значения:
Основание A = 6 см
Основание B = 2 см
Строна C = 8 см
Строна D = 4√3 см
Применяя теорему косинусов, имеем:
cos(угол C) = (C² - A² - B²) / (2 * A * B)
Подставляя известные значения:
cos(угол C) = (8² - 6² - 2²) / (2 * 6 * 2)
cos(угол C) = (64 - 36 - 4) / 24
cos(угол C) = 24 / 24
cos(угол C) = 1
Угол C будет равен арккосинусу (обратная функция косинуса) от значения 1:
угол C = arccos(1)
Угол C = 0 градусов.
Таким образом, угол, который образует большая боковая сторона с большей основой трапеции, равен 0 градусов. Это означает, что большая боковая сторона параллельна большей основе трапеции.
Щоб визначити відстань між пішоходом і велосипедистом через 2 години, потрібно знати, яку відстань кожен з них пройшов за цей час.
Швидкість пішохода становить 5 км/год, тому за 2 години він пройде:
5 км/год * 2 год = 10 км.
Швидкість велосипедиста дорівнює 12 км/год, тому за 2 години він пройде:
12 км/год * 2 год = 24 км.
Таким чином, пішохід пройде 10 км, а велосипедист - 24 км. Відстань між ними через 2 години становитиме різницю між цими відстанями:
24 км - 10 км = 14 км.
Отже, через 2 години відстань між пішоходом і велосипедистом становитиме 14 км.
Чтобы найти угол между большей боковой стороной и большей основой трапеции, можно воспользоваться теоремой косинусов.
Обозначим большую основу трапеции как основание A, меньшую основу как основание B, большую боковую сторону как сторону C, и меньшую боковую сторону как сторону D.
Из условия задачи, известны следующие значения:
Основание A = 6 см
Основание B = 2 см
Строна C = 8 см
Строна D = 4√3 см
Применяя теорему косинусов, имеем:
cos(угол C) = (C² - A² - B²) / (2 * A * B)
Подставляя известные значения:
cos(угол C) = (8² - 6² - 2²) / (2 * 6 * 2)
cos(угол C) = (64 - 36 - 4) / 24
cos(угол C) = 24 / 24
cos(угол C) = 1
Угол C будет равен арккосинусу (обратная функция косинуса) от значения 1:
угол C = arccos(1)
Угол C = 0 градусов.
Таким образом, угол, который образует большая боковая сторона с большей основой трапеции, равен 0 градусов. Это означает, что большая боковая сторона параллельна большей основе трапеции.