Равносильные неравенства – неравенства, имеющие одни и те же решения. В частном случае, неравенства, не имеющие решений, тоже называются равносильными.
1) 20·x-11≥19·x+18
20·x-19·x≥18+11
x≥29
x∈[29; +∞)
13·x-2≥12·x+27
13·x-12·x≥27+2
x≥29
x∈[29; +∞)
Так как множества решений совпадают, то неравенства
20·x-11≥19·x+18 и 13·x-2≥12·x+27
равносильны!
2) 35·y-12,8<1,2
35·y<1,2+12,8
35·y<14
y<14/35
y<2/5
y∈(-∞; 2/5)
5·y<2
y<2/5
y∈(-∞; 2/5)
Так как множества решений совпадают, то неравенства
Пошаговое объяснение:
1) неравенства х ≥ -8 и х + 3 ≥ -5; являются равносильными, так как 2-е неравенство преобразуется в х ≥ -8:
х + 3 ≥ -5 ⇒ х ≥ -5 - 3 ⇒ х ≥ - 8
2) неравенства у ≤ 10 и у - 1 ≤ 9; являются равносильными, так как 2-е неравенство преобразуется в у ≤ 10:
у - 1 ≤ 9; ⇒ у ≤ 9 + 1 ⇒ у ≤ 10
3) неравенства х > 5 и 5х > 25 являются равносильными, так как 2-е неравенство преобразуется в
5х > 25 ⇒ x > 25 : 5 ⇒ x > 5
4) неравенства х < 3 и -3х > -9 являются равносильными, так как 2-е неравенство преобразуется в
-3х > -9 ⇒ -х > -9 : 3 ⇒ -x > -3 ⇒ x < 3
5) неравенства х < 20 и 0.5 (х+3) > 10 не являются равносильными, так как 2-е неравенство преобразуется в
0.5 (х+3) > 10 ⇒ 0,5х + 1,5 > 10 ⇒ 0.5x > 10 - 1.5 ⇒ 0.5x > 8.5 ⇒
⇒ x > 17
6) неравенства у ≥ -16 и -0.25у ≤ 4 являются равносильными, так как 2-е неравенство преобразуется в
-0.25у ≤ 4 ⇒ -y ≤ 16 ⇒ y ≥ - 16
Равносильные неравенства – неравенства, имеющие одни и те же решения. В частном случае, неравенства, не имеющие решений, тоже называются равносильными.
1) 20·x-11≥19·x+18
20·x-19·x≥18+11
x≥29
x∈[29; +∞)
13·x-2≥12·x+27
13·x-12·x≥27+2
x≥29
x∈[29; +∞)
Так как множества решений совпадают, то неравенства
20·x-11≥19·x+18 и 13·x-2≥12·x+27
равносильны!
2) 35·y-12,8<1,2
35·y<1,2+12,8
35·y<14
y<14/35
y<2/5
y∈(-∞; 2/5)
5·y<2
y<2/5
y∈(-∞; 2/5)
Так как множества решений совпадают, то неравенства
35·y-12,8<1,2 и 5·y<2
равносильны!