1. Формула для объёма всего "пирамидообразного" V1 = 1/3 * S1 * h1 Формула для объема призмы V2 = S2 h2.
Пусть в основании квадрат с радиусом 2а. Тогда S1 = pi * a^2 S2 = 4a^2 h2 = h1 V2 / V1 = 3 S2 h2 / (S1 h1) = 3 * 4 / pi = 12 / pi
2. Если линейные размеры увеличить в k раз, площади увеличиваются в k^2 раз, объемы - в k^3 раз. Кол-во краски пропорционально площади поверхности.
Понадобится 100 * 3^2 = 900 г краски
3) Радиусы равны 3 и 5. В осевом сечении - равнобедренная трапеция с основаниями 6 и 10, в которую можно вписать окружность. Окружность можно вписать, если суммы длин противоположных сторон равны. Тогда бок. сторона = образующая = (6 + 10) / 2 = 8 S = pi (r1 + r2) l = pi (3 + 5) * 8 = 64pi
1. Предприятие изготовило за квартал 500 насосов, из которых 60 % имели высшую категорию качества. Сколько насосов высшей категории качества изготовило предприятие?
Найдем 60 % от 500 (общее количество насосов).
60 % = 0,6
500 · 0,6 = 300 насосов высшей категории качества.
ответ: 300 насосов высшей категории качества.
2.Ученик прочитал 138 страниц, что составляет 23 % числа всех страниц в книге. Сколько страниц в книге?
Итак, нам неизвестно сколько всего страниц в книге. Но мы знаем, что часть, которую прочитал ученик (138 страниц) составляет 23 % от общего количества страниц в книге.
Так как 138 стр. — это всего лишь часть, само количество страниц, естественно, будет больше 138. Это нам при проверке.
3.Из 200 арбузов 16 оказались незрелыми. Сколько процентов всех арбузов составили незрелый арбузы? Решение:
О чем спрашивают? О незрелых арбузах. Значит, 16 делим на общее количество арбузов и умножаем на 100 %.
ответ: 8 % — составляют незрелые арбузы от всех арбузов.
Формула для объема призмы V2 = S2 h2.
Пусть в основании квадрат с радиусом 2а. Тогда
S1 = pi * a^2
S2 = 4a^2
h2 = h1
V2 / V1 = 3 S2 h2 / (S1 h1) = 3 * 4 / pi = 12 / pi
2. Если линейные размеры увеличить в k раз, площади увеличиваются в k^2 раз, объемы - в k^3 раз.
Кол-во краски пропорционально площади поверхности.
Понадобится 100 * 3^2 = 900 г краски
3) Радиусы равны 3 и 5.
В осевом сечении - равнобедренная трапеция с основаниями 6 и 10, в которую можно вписать окружность. Окружность можно вписать, если суммы длин противоположных сторон равны. Тогда бок. сторона = образующая = (6 + 10) / 2 = 8
S = pi (r1 + r2) l = pi (3 + 5) * 8 = 64pi
Найдем 60 % от 500 (общее количество насосов).
60 % = 0,6
500 · 0,6 = 300 насосов высшей категории качества.
ответ: 300 насосов высшей категории качества.
2.Ученик прочитал 138 страниц, что составляет 23 % числа всех страниц в книге. Сколько страниц в книге?
Итак, нам неизвестно сколько всего страниц в книге. Но мы знаем, что часть, которую прочитал ученик (138 страниц) составляет 23 % от общего количества страниц в книге.
Так как 138 стр. — это всего лишь часть, само количество страниц, естественно, будет больше 138. Это нам при проверке.
3.Из 200 арбузов 16 оказались незрелыми. Сколько процентов всех арбузов составили незрелый арбузы?
Решение:
О чем спрашивают? О незрелых арбузах. Значит, 16 делим на общее количество арбузов и умножаем на 100 %.
ответ: 8 % — составляют незрелые арбузы от всех арбузов.