Цена за сыр за 5 дней до окончания срока годности изменяется в геометрической прогрессии. Каждый день она уменьшается на 50% по сравнению с предыдущим днем, пока продукт или купят, или спишут в последний день срока годности. Какая цена сыра без скидки, если за три дня до окончания срока годности он стоил 82,5 рубля?
f(x) = (2x² + 3x - 5)/(x² + 4x - 5)
сделаем сначала x->∞ lim(x->∞) (2x² + 3x - 5)/(x² + 4x - 5) = делим на х² числитель и знаменатель = lim(x->∞) (2 + 3/x - 5/x²)/(1 + 4/x - 5/x²) = (2 + 0 - 0)/(1 + 0 - 0) = 2
теперь разложим числитель и знаменатель
2x² + 3x - 5 = 2(x + 5/2)(x - 1) = (2x + 5)(x - 1)
D = 9 + 40 = 49
x12 = (-3 +- 7)/4 = -5/2 1
x² + 4x - 5 = (x - 1)(x + 5)
D = 16 + 20 = 36
x12 = (-4 +- 6)/2 = -5 1
итак получили f(x) = (2x + 5)(x - 1)/(x - 1)(x + 5) = (2x + 5)/(x + 5)
1/ x->1 (2x + 5)(x - 1)/(x - 1)(x + 5) = (2x + 5)/(x + 5) = (2 + 5)/(1 + 5) = 7/6
2/ x->-5 (2x + 5)(x - 1)/(x - 1)(x + 5) = (2x + 5)/(x + 5)=(-10 + 5)/(-5+5) = -5/0=-∞
3/ x->-1 (2x + 5)(x - 1)/(x - 1)(x + 5) = (2x + 5)/(x + 5)=(-2+5)/(-1 + 5) = 3/4
4/ x->2/5 (2x + 5)(x - 1)/(x - 1)(x + 5) = (2x + 5)/(x + 5)=(4/5 + 5)/(2/5 + 5) = 29/5 : 12/5 = 29/12
вероянее -5/2 было тогда (2x + 5)(x - 1)/(x - 1)(x + 5) = (2x + 5)/(x + 5) = (-5 + 5)/(-5/2 + 5) = 0/5/2 = 0
5/ x-> ∞ (2x + 5)(x - 1)/(x - 1)(x + 5) = (2x + 5)/(x + 5) = (2 + 5/x)/(1 + 5/x) = 2
Пошаговое объяснение:
Узнаем всю сумму зарплаты
42:2*25=525 руб - вся зарплата
7/10 потрачены на продукты, но не сказано от общей суммы или от остатка, по-этому решим двумя вариантами итак:
1) если от общей суммы, то
525: 10*7=367,5 руб потрачено на продукты
367,5+42=409,5 руб потрачено на обувь и продукты
525-409,5=115,5 руб потрачено на другие выплаты
ответ 115,5 руб
2) если продукты купили на остаток денег после покупки обуви
525-42=483 руб осталось
483/10*7=338,1 руб потратили на продукты
483 - 338,1=144,9 руб потрачено на другие выплаты
ответ 144,9 руб