Параметры a и b называются полуосями эллипса (большой и малой соответственно). Точки A1(−a,0), A2(a,0), B1(0,−b), и B2(0,b), его вершинами. Оси симметрии Ox и Oy - главными осями а центр симметрии O− центром эллипса.
Точки F1(−c,0) и F2(c,0), где c=
√
a2−b2
≥0, называются фокусами эллипса векторы
¯
F1M
и
¯
F2M
− фокальными радиус-векторами, а числа r1=|
¯
F1M
| и r2=|
¯
F2M
|− фокальными радиусами точки M, принадлежащей эллипсу. В частном случае a=b фокусы F1 и F2 совпадают с центром, а каноническое уравнение имеет вид
x2
a2
+
y2
a2
=1, или x2+y2=a2, т.е. описывает окружность радиуса a с центром в начале координат.
Число e=
c
a
=
√
1−
b2
a2
(0≤e<1) называется эксцентриситетом эллипса и является мерой его "сплюснутости" (при e=0 эллипс является окружностью.)
Прямые D1:x=−a/e и D2:x=a/e, перпендикулярные главной оси и проходящей на расстоянии a/e от центра, называются директрисами эллипса.
Теорема. (Директориальное свойство эллипса)
Эллипс является множеством точек, отношение расстояний от которых до фокуса и до соответствующей директрисы постоянно и равно e.
Смотри в файле решения 1 и 2 номера ;)
Пошаговое объяснение:
Здесь я приведу решения задач и уравнение, номера 3-5:
Номер 3
2,4(х+0,98)=4,08
(х+0,98)=4,08:2,4
х+0,98=1,7
х=0,72
ответ: 0,72
Задача номер 4
1) 19,8+1,7=21,5 (км/ч) - скорость л. по теч. реки
2) 19,8-1,7=18,1 (км/ч) - скорость л против теч. реки
3) 1,4•21,5=30,1 (км) - путь теч. реки
4) 2,2•18,1=39,82 (км) - S(путь) против теч. реки
5) 30,1+39,82=69,92(км) - путь
ответ: лодка преодолела 69,92 км.
Задача номер 5
Пусть х искомое число
Число увеличилось в 10 раз-10х
Разница между новым и старым числом 14,31, т е
10х-х=14,31
9х=14,31
х=14,31:9
х=1,59
ответ: 1,59
Эллипс.
Эллипс с каноническим уравнением
x2
a2
+
y2
b2
=1,a≥b>0, имеет форму изображенную на рисунке.
Параметры a и b называются полуосями эллипса (большой и малой соответственно). Точки A1(−a,0), A2(a,0), B1(0,−b), и B2(0,b), его вершинами. Оси симметрии Ox и Oy - главными осями а центр симметрии O− центром эллипса.
Точки F1(−c,0) и F2(c,0), где c=
√
a2−b2
≥0, называются фокусами эллипса векторы
¯
F1M
и
¯
F2M
− фокальными радиус-векторами, а числа r1=|
¯
F1M
| и r2=|
¯
F2M
|− фокальными радиусами точки M, принадлежащей эллипсу. В частном случае a=b фокусы F1 и F2 совпадают с центром, а каноническое уравнение имеет вид
x2
a2
+
y2
a2
=1, или x2+y2=a2, т.е. описывает окружность радиуса a с центром в начале координат.
Число e=
c
a
=
√
1−
b2
a2
(0≤e<1) называется эксцентриситетом эллипса и является мерой его "сплюснутости" (при e=0 эллипс является окружностью.)
Прямые D1:x=−a/e и D2:x=a/e, перпендикулярные главной оси и проходящей на расстоянии a/e от центра, называются директрисами эллипса.
Теорема. (Директориальное свойство эллипса)
Эллипс является множеством точек, отношение расстояний от которых до фокуса и до соответствующей директрисы постоянно и равно e.
Примеры.
2.246. Построить эллипс 9x2+25y2=225. Найти: а) полуоси; б) координаты фокусов; в) эксцентриситет; г) уравнения директрис.
Пошаговое объяснение:
я не знаю правильно ли это