В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
KOTE422
KOTE422
10.02.2023 02:21 •  Математика

Четырьмя вершинами прямоугольного параллелепипеда abcdefgh являются точки b(2; 3; 0), e(2; 0; 5), f(2; 3; 5), g(0; 3; 5). найдите площадь полной поверхности и объём этого параллелепипеда.

Показать ответ
Ответ:
79869106698
79869106698
19.02.2023 15:38

Справочник

Тригонометрия

Статью подготовили специалисты образовательного сервиса Zaochnik.

Как работает сервис

Наши социальные сети

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Содержание:

Синус, косинус, тангенс и котангенс. Определения

Угол поворота

Числа

Тригонометрические функции углового и числового аргумента

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Синус, косинус, тангенс и котангенс: основные формулы

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (

sin

α

) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (

cos

α

) - отношение прилежащего катета к гипотенузе.

Тангенс угла (

t

g

α

) - отношение противолежащего катета к прилежащему.

Котангенс угла (

c

t

g

α

) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

Синус, косинус, тангенс и котангенс. Определения

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Угол поворота

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от

до

+

.

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Угол поворота

Начальная точка

A

с координатами (

1

,

0

) поворачивается вокруг центра единичной окружности на некоторый угол

α

и переходит в точку

A

1

. Определение дается через координаты точки

A

1

(

x

,

y

).

Синус (sin) угла поворота

Синус угла поворота

α

- это ордината точки

A

1

(

x

,

y

).

sin

α

=

y

Косинус (cos) угла поворота

Косинус угла поворота

α

- это абсцисса точки

A

1

(

x

,

y

).

cos

α

=

х

Тангенс (tg) угла поворота

Тангенс угла поворота

α

- это отношение ординаты точки

A

1

(

x

,

y

) к ее абсциссе.

t

g

α

=

y

x

Котангенс (ctg) угла поворота

Котангенс угла поворота

α

- это отношение абсциссы точки

A

1

(

x

,

y

) к ее ординате.

c

t

g

α

=

x

y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (

0

,

1

) и (

0

,

1

). В таких случаях выражение для тангенса

t

g

α

=

y

x

просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов

α

.

Тангенс определен для всех углов, кроме

α

=

90

°

+

180

°

k

,

k

Z

(

α

=

π

2

+

π

k

,

k

Z

)

Котангенс определен для всех углов, кроме

α

=

180

°

k

,

k

Z

(

α

=

π

k

,

k

Z

)

При решении практических примеров не говорят "синус угла поворота

α

". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

0,0(0 оценок)
Ответ:
KatonAnton
KatonAnton
26.01.2021 19:29

Пошаговое объяснение:

Сумма цифр от 1 до 9 равна 45

Сумма чисел в сетке в строках   23+11+7 = 41

Сумма чисел в сетке в столбцах  20+12+9 = 41

Так как 41 < 45, то какая-то большая цифра должна отсутствовать, а меньшая повторяться хотя бы дважды.

1) строка: единственный вариант суммы без повторения

23 = 9 + 8 + 6

Так как в последнем столбце сумма 9, значит, туда не подходит 9 и 8, только 6. В первом столбце останется 9, потому что здесь должна быть наибольшая сумма 20.

Вариант первой строки  986

3) столбец единственный вариант 9 = 6 + 1 + 2

Если 2 поставить во вторую строку, то для суммы 11 нужно добрать 9. Проверка всех вариантов показывает перебор по второму столбцу. Поэтому третий столбец  612

2) столбец: 12-8 = 4 = 3+1    Второй столбец  831

Для первого столбца - недостающие цифры до сумм

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота