Нам нравится общаться с людьми, которые хорошо выглядят. но они могут быть красивы лишь снаружи,а внутри у них темнота. мы доверяем им. но рано или поздно эта темнота выходит наружу. как мало людей с чистой и светлой душой. и даже неважно красив он снаружи или нет. ведь какая разница, какая у тебя внешность? главное что внутри тебя. многие люди не оценивают внутренний мир и не обращают на него внимания.им важна лишь красота которая находится снаружи. чаще всего такие люди тоже с пустой душой.
Теорема Ферма (необходимый признак существования экстремума функции)
если точка x₀- точка экстремума функции f(x), то в этой точке производная функции равна нулю (f '(x₀) = 0) или не существует.
мы читаем наоборот. где f '(x₀) = 0 там и экстремум, значит наша точка = (-3; 0)
теперь надо определиться, это максимум или минимум
для этого применим другую теорему
Теорема (первый достаточный признак существования экстремума функции).
критическая точка x₀ является точкой экстремума функции f(x), если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
то, что нам надо из этой теоремы, я подчеркнула, потому как у нас производная в точке (-3,0) меняет знак с "+" на "-".
значит это у нас точка точка максимума.
итак, ответ
функция f(x) принимает наибольшее значение в точке (-3; 0)
Пошаговое объяснение:
Теорема Ферма (необходимый признак существования экстремума функции)
если точка x₀- точка экстремума функции f(x), то в этой точке производная функции равна нулю (f '(x₀) = 0) или не существует.
мы читаем наоборот. где f '(x₀) = 0 там и экстремум, значит наша точка = (-3; 0)
теперь надо определиться, это максимум или минимум
для этого применим другую теорему
Теорема (первый достаточный признак существования экстремума функции).
критическая точка x₀ является точкой экстремума функции f(x), если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
то, что нам надо из этой теоремы, я подчеркнула, потому как у нас производная в точке (-3,0) меняет знак с "+" на "-".
значит это у нас точка точка максимума.
итак, ответ
функция f(x) принимает наибольшее значение в точке (-3; 0)