3)
√(5-x²)-3x=0
√(5-x²)=3x
Найдём ОДЗ (область допустимых значений):
а) Выражение под знаком квадратного корня не может быть отрицательным,значит.оно больше или равно 0.
в) В правой части не может стоять отрицательное значение,так как квадратный корень из числа есть число неотрицательное,значит,x≥0.
Решаем систему:
{5-x²≥0 {x²≤5 {-√5≤ x ≤ +√5 ⇒ ОДЗ : 0 ≤ x ≤√5
{3x≥0 {x≥0 {x≥0
Теперь,когда и правая,и левая части у нас положительные,можем возвести их в квадрат:
(√(5-х²)²=(3х)²
5-х²=9х²
9х²+х²=5
10х²=5
х²=0.5
х1=√0.5 >0, но <√5 -значит, х1 -корень уравнения
х2= -√0.5 -не удовлетворяет ОДЗ: 0 ≤ x ≤ √5
ответ: х=√0.5.
------------------------------------------------------------
Если вам удобнее проверить корни,подставив их значения в уравнение,то так тоже можно.
3)
√(5-x²)-3x=0
√(5-x²)=3x
Найдём ОДЗ (область допустимых значений):
а) Выражение под знаком квадратного корня не может быть отрицательным,значит.оно больше или равно 0.
в) В правой части не может стоять отрицательное значение,так как квадратный корень из числа есть число неотрицательное,значит,x≥0.
Решаем систему:
{5-x²≥0 {x²≤5 {-√5≤ x ≤ +√5 ⇒ ОДЗ : 0 ≤ x ≤√5
{3x≥0 {x≥0 {x≥0
Теперь,когда и правая,и левая части у нас положительные,можем возвести их в квадрат:
(√(5-х²)²=(3х)²
5-х²=9х²
9х²+х²=5
10х²=5
х²=0.5
х1=√0.5 >0, но <√5 -значит, х1 -корень уравнения
х2= -√0.5 -не удовлетворяет ОДЗ: 0 ≤ x ≤ √5
ответ: х=√0.5.
------------------------------------------------------------
Если вам удобнее проверить корни,подставив их значения в уравнение,то так тоже можно.
3=1*3 4=2*2 17=17*1
7=1*7 6=2*3 51=3*17
НОК (24,16)=2*2*2*2*3=48 НОк (2,5,7)=2*5*7=70 НОК (2,4,7)=2*2*7=28
24=3*2*2*2 2=2*1 2=2*1
16=2*2*2*2 5=5*1 4=2*2
7=1*7 7=1*7