ПРИМЕР. В задачах даны координаты точек A,B,C. Требуется: 1) записать векторы AB и AC в системе орт и найти модули этих векторов; 2) найти угол между векторами AB и AC.
Решение.
1) Координаты векторов в системе орт. Координаты векторов находим по формуле:
X=xj-xi; Y=yj-yi
здесь X, Y координаты вектора; xi, yi - координаты точки Аi; xj, yj - координаты точки Аj
Например, для вектора AB: X=x2-x1=12-7=5; Y=y2-y1=-1-(-4)=3
AB(5;3), AC(3;5), BC(-2;2)
2) Длина сторон треугольника. Длина вектора a(X;Y) выражается через его координаты формулой:
3) Угол между прямыми. Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:
где a1a2=X1X2+Y1Y2
Найдем угол между сторонами AB и AC
γ = arccos(0.88) = 28.070
8) Уравнение прямой. Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:
Уравнение прямой AB. Каноническое уравнение прямой:
Значит, мы можем переставить все числа, так,
чтобы оказалось, что
Введём новые переменные
И будем искать такие комбинации чтобы
и
Начнём с первого требования, оно эквивалентно утверждению, что:
;
;
При правая часть отрицательная, а левая положительна, что не возможно.
Значит, ;
Теперь подставим вместо его значение и будем искать такие комбинации чтобы:
– теперь всегда будет выполняться с
и
Проанализируем второе требование, оно эквивалентно утверждению, что:
;
;
При правая часть отрицательная, а левая положительна, что не возможно.
При но это не подходит по условию.
Значит, ;
Теперь подставим вместо его значение и будем искать такие комбинации чтобы:
– теперь всегда будет выполняться с
– теперь всегда будет выполняться с
Проанализируем последнее требование, оно эквивалентно утверждению, что:
;
;
;
;
;
Сумма всей комбинации – это:
максимум которой достигается при минимальном значении
в знаменателе дроби т.е. при
Тогда сумма всей комбинации
;
О т в в е т : 59 .
ПРИМЕР. В задачах даны координаты точек A,B,C. Требуется: 1) записать векторы AB и AC в системе орт и найти модули этих векторов; 2) найти угол между векторами AB и AC.
Решение.
1) Координаты векторов в системе орт. Координаты векторов находим по формуле:
X=xj-xi; Y=yj-yi
здесь X, Y координаты вектора; xi, yi - координаты точки Аi; xj, yj - координаты точки Аj
Например, для вектора AB: X=x2-x1=12-7=5; Y=y2-y1=-1-(-4)=3
AB(5;3), AC(3;5), BC(-2;2)
2) Длина сторон треугольника. Длина вектора a(X;Y) выражается через его координаты формулой:
3) Угол между прямыми. Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:
где a1a2=X1X2+Y1Y2
Найдем угол между сторонами AB и AC
γ = arccos(0.88) = 28.070
8) Уравнение прямой. Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями:
Уравнение прямой AB. Каноническое уравнение прямой:
или
y=3/5x-41/5 или 5y-3x+41=0