По условию мы получаем четыре равнобедренных треугольника: АСF, СFЕ, FED, BDE. Углы при основании равнобедренного треугольника равны. Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине. Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как? Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А. И так до конца, т.е до выражения угла А3 через А. Далее составляется уравнение: 2А+А3(выраженное через А)=180. Если все правильно выразите, то должно получиться 9А=360, т.е. А=40. Успехов, дерзайте!
Алгоритм:
а)взять первую производную
б) вычислить значения х, при которых первая производная равна 0
в) вычислить вторую производную и её знаки при значения х которые получили в пункте(б)
г) исследовать поведение второй производной в этих точках.
Итак:
первая производная: 3х²-24х
3х²-24х=0 при х=0 и х=8
вторая производная: 6х-24 при х=0 меньше 0, а это значит, что функция у(максимум)(т.е выпуклость)=1 при х=0
6х-24 при х=8 больше 0, а это значит, что функция у(минимум)(т.е вогнутость)=-255(но нас это по условию задачи не интересует)
Удачи!
Пошаговое объяснение:
Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине.
Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как?
Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А.
И так до конца, т.е до выражения угла А3 через А.
Далее составляется уравнение: 2А+А3(выраженное через А)=180.
Если все правильно выразите, то должно получиться
9А=360, т.е. А=40.
Успехов, дерзайте!