В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
bilayenot
bilayenot
02.06.2023 12:54 •  Математика

Числа F0, F1, F2,... заданы так: F0=0, F1=1, Fn+2=Fn+1+Fn для n=0,1,2 Докажите, что для каждого n большего или равного 0 подходит:
Fn меньше/равно ((1+ корень из 5)/2)в степени n-1

Показать ответ
Ответ:
zoziev2014
zoziev2014
15.10.2020 15:07

Докажем тождество F_{n+1}F_{n-1}-F_{n}^2=(-1)^n. Для этого заметим, что \left[\begin{array}{cc}1&1\\1&0&\end{array}\right]^n= \left[\begin{array}{cc}F_{n+1}&F_{n}\\F{n}&F_{n-1}&\end{array}\right], что легко доказывается по индукции. Взяв определитель от обеих сторон, приходим к требуемому.

Теперь докажем лемму: для любого четного n\frac{F_{n+1}}{F_{n}} < \frac{1+\sqrt{5}}{2}.

Доказательство: пусть a_{n}=\frac{F_{n}}{F_{n+1}}. Сразу примем, что предел этой последовательности существует. Это равносильно \lim\limits_{n\to\infty}(a_{n}-a_{n-1})=0.a_{n}-a_{n-1}=\frac{F_{n}}{F_{n+1}}-\frac{F_{n-1}}{F_{n}}=\frac{F_{n}^2-F_{n+1}F_{n-1}}{F_{n+1}F_{n}}=\frac{(-1)^{n+1}}{F_{n+1}F_{n}}. Отсюда очевидно, что \lim\limits_{n\to\infty}(a_{n}-a_{n-1})=0. Пусть L=\lim\limits_{n\to\infty}a_{n}. Тогда \frac{F_{n+1}}{F_{n}}=\frac{F_{n}+F_{n-1}}{F_{n}}=1+\frac{F_{n-1}}{F_{n}}. Взяв предел от обеих частей, приходим к \frac{1}{L}=1+L \Rightarrow L=\frac{1+\sqrt{5}}{2}.  Поскольку \frac{F_{n+1}}{F_{n}} (применяя тождество, получаем разницу 1), лемма доказана.

Теперь по индукции.

База k=0 очевидна. Пусть для всех n\leq k это верно. Докажем, что F_{k+1}\leq (\frac{1+\sqrt{5}}{2})^k . Пусть k четно, тогда \frac{F_{k+1}}{F_{k}}\leq \frac{1+\sqrt{5}}{2}, домножая на F_{k} и применяя предположение индукции, получаем требуемое. Теперь неравенство выполняется для всех n\leq k+1. Далее берем k+2 — четное число — и повторяем операцию. Тем самым докажем для всех нечетных чисел.

Теперь докажем для всех четных. F_{k+2}=F_{k+1}+F_{k}\leq \varphi^k+\varphi^{k-1}=\varphi^k(1+\varphi^{-1})=\varphi^{k+1}, что и требовалось

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота