В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
steamoff
steamoff
15.09.2022 09:26 •  Математика

число -2 есть корнем уравнения 3х^2-4х-t Найти второй корень уравнения и значение t

Показать ответ
Ответ:
Маша20075906079
Маша20075906079
14.05.2020 18:51
1.а) 5742, 3400, 7017,8005, 1302.
б)997, 998, 999,1000,1001,1002.
1998, 1999,2000,2001,2002,2003.
5996, 5997,5998,5999,6000,6001.
в)4998,5000
2358, 2560
9998,10000
2.7050 - 7000+50
1105- 1000+100+5
8324- 8000+300+20+4
12483- 12000+400+80+3
16500- 16000+500
12005- 12000+5
17063- 17000+60+3
Задача №1.
 1)252/3=84(м)-сатина
2)84+31=115(м) шелка
3)84+115=199(м) завезли
ответ: 199м
Задача №2.
1)84/3=28(стр)-прочитал мальчик
2)84-28=56(стр) - ост.прочитать
ответ:56 стр
Задача №3.
1)72/8=9(л)
ответ: 9 лет внуку
Задача №4.
1) 100/25=4(часа) ехал первый автобус
2) 50*4=200(км) проехал 2й автобус
ответ: 200км
задача №5.
1) 640*3=1920(км) пролетел 1 самолет
2)3630-1920=1710(км) - пролетел 2й самолет
3) 1710/3=570км/ч - скорость 2го самолета
ответ: 570 км/ч
5. 32см(320мм)>302 мм
7ч(420мин)>70мин
4сут(96ч)=96ч
3600с(1ч)<2ч
4т2кг(4002кг)=4002кг
5кг<4ц(400кг)
61мин(1ч 1мин)<1ч.6 мин
7км(7000м)>670м
0,0(0 оценок)
Ответ:
Lizankanahovicyn
Lizankanahovicyn
08.06.2022 17:58

Рассмотрим плоскость и прямую , заданную точкой и направляющим вектором .

Существует три варианта взаимного расположения прямой и плоскости:

1) прямая пересекает плоскость в некоторой точке ;

2) прямая параллельна плоскости: ;

3) прямая лежит в плоскости: . Да, так вот нагло взяла, и лежит.

Как выяснить взаимное расположение прямой и плоскости?

Изучим аналитические условия, которые позволят нам ответить на данный вопрос. Выполним схематический чертёж, на котором прямая пересекает плоскость:

Прямая пересекает плоскость

Прямая пересекает плоскость тогда и только тогда, когда её направляющий вектор не ортогонален вектору нормали плоскости.

Из утверждения следует, что скалярное произведение вектора нормали и направляющего вектора будет отлично от нуля: .

В координатах условие запишется следующим образом:

Если же данные векторы ортогональны, то есть если их скалярное произведение равно нулю: , то прямая либо параллельна плоскости, либо лежит в ней:

Прямая параллельна плоскостиПрямая лежит в плоскости

Разграничим данные случаи.

Если прямая параллельна плоскости, то точка (а значит, и ЛЮБАЯ точка данной прямой) не удовлетворяет уравнению плоскости: .

Таким образом, условие параллельности прямой и плоскости записывается следующей системой:

Если прямая лежит в плоскости, то точка (а, значит, и ЛЮБАЯ точка данной прямой) удовлетворяет уравнению плоскости: .

Аналитические условия данного случая запишутся похожей системой:

Разборки с взаимным расположением прямой и плоскости достаточно примитивны – всего в два шага. Кроме того, на практике можно обойтись даже без значка системы. Исследование взаимного расположения прямых в пространстве, которое проводилось на уроке Задачи с прямой в пространстве, намного трудозатратнее. А тут всё проще:

Пример 1

Выяснить взаимное расположение прямой, заданной точкой и направляющим вектором , и плоскости .

Решение: Вытащим вектор нормали плоскости: .

Вычислим скалярное произведение вектора нормали плоскости и направляющего вектора прямой: , значит, прямая либо параллельна плоскости, либо лежит в ней.

Подставим координаты точки в уравнение плоскости:

Получено верное равенство, следовательно, точка лежит в данной плоскости. Разумеется, и любая точка прямой тоже будет принадлежать плоскости.

ответ: прямая лежит в плоскости

Пример 2

Выяснить взаимное расположение плоскости и прямой .

Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.

После небольшой разминки мускулатуры начинаем накидывать блины на штангу:

Основные задачи на прямую и плоскость

Данная задача прям таки вертится в умах человечества, и встречается в практических задачах чаще всего. Когда я приступил к разработке пространственной геометрии, то, начиная с урока Уравнение плоскости, мне даже было немного неловко, что посетители сайта обманывались в своих ожиданиях. Многие задачи уже были, а вот этой ещё нет….

Рассмотрим прямую , которая пересекает плоскость . Требуется найти точку, в которой прямая пересекает плоскость: . Хотел разобрать задачу в общем виде, но передумал… лучше традиционный практический пример:

Пример 3

Дана прямая и плоскость . Требуется:

а) доказать, что прямая пересекает плоскость;

б) найти точку пересечения прямой и плоскости;

в) через прямую провести плоскость («омега»), перпендикулярную плоскости ;

г) найти проекцию прямой на плоскость ;

д) найти угол между прямой и плоскостью .

НеслАбо. А ведь всё началось с единственной точки пересечения =)

Решение: Сначала закрепим задачу о взаимном расположении прямой и плоскости:

а) Из уравнений прямой находим принадлежащую ей точку и направляющий вектор:

Вектор нормали плоскости, как всегда, сдаётся без боя:

Вычислим скалярное произведение:

, значит, прямая пересекает плоскость, что и требовалось доказать.

Как найти точку пересечения прямой и плоскости?

б) Найдём точку пересечения плоскости и прямой: . Не «Чёрный квадрат» Малевича, но тоже шедевр:

Как найти точку пересечения прямой и плоскости?

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота