1) Подкоренное выражение должно быть неотрицательно. tg x определен при тех х, при которых знаменатель отличен от нуля.
Решение первого неравенства : -2 ≤ x ≤ 2 Решение уравнения cos x=0 ⇒ x = π/2 + πk, k ∈Z Рисуем отрезок [-2;2] на клетчатой бумаге ! Чтобы можно было отметить точки π/2 (см. рис.1) 2 клеточки = единичному отрезку. Слева от 0 4 клеточки и справа 4 клеточки. π равняется 6 клеточкам, а π/2 3 клеточки. значит на [-2;2] надо отметить две точки π/2 пустым кружком и -π/2 ответ [-2; -π/2) U(-π/2; π/2) U (π/2 ; 2] 2) Функция у = arcsin x определена на отрезке [-1;1] Значит, -1 ≤ х-1 ≤1 прибавим 1 ко всем частям неравенства 0 ≤ х ≤2 Область определения числителя отрезок [0;2] В знаменателе логарифмическая функция, она определена при х > 0 и знаменатель должен быть отличен от нуля. lg x ≠0 ⇒ x≠10⁰, x≠1
Область определения определяется тремя условиями, которые надо записать в системе -1≤х-1≤1 х>0 lg x≠0
Из отрезка [0;2] убираем точку 0 ( знаменатель определен при х>0) и точку 1 (х≠1) ответ. (0;1) U (1; 2] 3) В первой дроби подкоренное выражения числителя должно быть неотрицательным Знаменатель должен быть отличен от 0. lg определен при х-1 > 0 Итак, три условия в системе sin x ≥0,5 x≠2 x-1>0 Первому неравенству удовлетворяют х, такие, что π/4+2πk ≤x≤3π/4 + 2πk, k∈Z Опять листочек в клеточку: (см. приложение рис. 2) (1;2)U(2; 3π/4] U (π/4 + 2πn ; 3π/4 + 2πn), n ∈N Внимательно! n начинается с 1, потому как решение х >1 обязывает нас взять только те решения тригонометрического неравенства, которые расположены правее 1.
1)) (60-24) :3+1= 13
60-24=36; 36:3=12; 12+1=13.
2)) 60-(24:3+1)= 51
24:3=8; 8+1=9; 60-9=51.
3)) 60-24: (3+1)=54
3+1=4; 24:4=6; 60-6= 54.
4)) (60-24) : (3+1)=9
60-24= 36; 3+1=4; 36:4= 9.
б)
1)) 84-(48:4) * (2+3)= 24
48:4=12; 2+3=5; 12•5=60; 84-60=24.
2)) (84-48) : 4* 2+3=21
84-48=36; 36:4=9; 9•2=18; 18+3=21.
3)) 84- (48:4*2+3)= 57
48:4=12; 12•2=24; 24+3=27; 84-27=57.
4)) (84-48:4) *2+3= 147
48:4=12; 84-12=72; 72•2=144; 144+3=147.
в)
1)) 48+(12:6+18) :2= 58
12:6=2; 2+18=20; 20:2=10; 48+10=58.
2)) (48+12): 6+18:2= 19
48+12=60; 60:6=10; 18:2=9; 10+9=19.
3)) (48+12:6+18) :2= 34
12:6=2; 48+2+18=68; 68:2=34.
4)) (48+12) : (6+18:2)= 4
19:2=9; 6+9=15; 48+12=60; 60:15=4.
tg x определен при тех х, при которых знаменатель отличен от нуля.
Решение первого неравенства : -2 ≤ x ≤ 2
Решение уравнения
cos x=0 ⇒ x = π/2 + πk, k ∈Z
Рисуем отрезок [-2;2] на клетчатой бумаге ! Чтобы можно было отметить точки π/2
(см. рис.1)
2 клеточки = единичному отрезку.
Слева от 0 4 клеточки и справа 4 клеточки.
π равняется 6 клеточкам, а π/2 3 клеточки.
значит на [-2;2] надо отметить две точки π/2 пустым кружком и -π/2
ответ [-2; -π/2) U(-π/2; π/2) U (π/2 ; 2]
2) Функция у = arcsin x определена на отрезке [-1;1]
Значит, -1 ≤ х-1 ≤1
прибавим 1 ко всем частям неравенства
0 ≤ х ≤2
Область определения числителя отрезок [0;2]
В знаменателе логарифмическая функция, она определена при х > 0 и знаменатель должен быть отличен от нуля.
lg x ≠0 ⇒ x≠10⁰, x≠1
Область определения определяется тремя условиями, которые надо записать в системе
-1≤х-1≤1
х>0
lg x≠0
Из отрезка [0;2] убираем точку 0 ( знаменатель определен при х>0) и точку 1 (х≠1)
ответ. (0;1) U (1; 2]
3) В первой дроби подкоренное выражения числителя должно быть неотрицательным
Знаменатель должен быть отличен от 0.
lg определен при х-1 > 0
Итак, три условия в системе
sin x ≥0,5
x≠2
x-1>0
Первому неравенству удовлетворяют х, такие, что
π/4+2πk ≤x≤3π/4 + 2πk, k∈Z
Опять листочек в клеточку:
(см. приложение рис. 2)
(1;2)U(2; 3π/4] U (π/4 + 2πn ; 3π/4 + 2πn), n ∈N
Внимательно! n начинается с 1, потому как решение х >1 обязывает нас взять только те решения тригонометрического неравенства, которые расположены правее 1.