19/30 или 0.63
Пошаговое объяснение:
1. Вычисляем сумму. (-5+8)+(-0,36+(-0,64))-1 2/3
Получаем : 3+(-0,36+(-0,64))-1 2/3
2. Когда перед выражением в скобках стоит знак "+", тогда оно остается прежним. 3+(-0,36+(-0,64))-1 2/3
Получаем : 3+(-0,36-0,34)-1 2/3
3. Представляем смешанную дробь виде неправильной дроби. 3+(-0,36-0,34)-1 2/3
Получаем : 3+(-0,36-0,34)- 5/3
4.Вычисляем разность 3+(-0,36-0,34)- 5/3
Получаем : 3+(-0,7)- 5/3
5. Раскрываем скобки (не забываем, что когда перед выражением в скобках стоит знак "+", тогда оно остается прежним). 3+(-0,7)- 5/3
Получаем : 3-0,7- 5/3
6. Вычисляем разность 3-0,7- 5/3
Получаем : 19/30 или 0.63
19/30 или 0.63
Пошаговое объяснение:
1. Вычисляем сумму. (-5+8)+(-0,36+(-0,64))-1 2/3
Получаем : 3+(-0,36+(-0,64))-1 2/3
2. Когда перед выражением в скобках стоит знак "+", тогда оно остается прежним. 3+(-0,36+(-0,64))-1 2/3
Получаем : 3+(-0,36-0,34)-1 2/3
3. Представляем смешанную дробь виде неправильной дроби. 3+(-0,36-0,34)-1 2/3
Получаем : 3+(-0,36-0,34)- 5/3
4.Вычисляем разность 3+(-0,36-0,34)- 5/3
Получаем : 3+(-0,7)- 5/3
5. Раскрываем скобки (не забываем, что когда перед выражением в скобках стоит знак "+", тогда оно остается прежним). 3+(-0,7)- 5/3
Получаем : 3-0,7- 5/3
6. Вычисляем разность 3-0,7- 5/3
Получаем : 19/30 или 0.63
Перепишем в таком виде:
( dy(x))/( dx)+(y(x))/x = -1/(x^2-1)
Положим mu(x) = e^( integral 1/x dx) = x.
Умножим обе части на mu(x):
x ( dy(x))/( dx)+y(x) = -x/(x^2-1)
заменим 1 = ( d)/( dx)(x):
x ( dy(x))/( dx)+( d)/( dx)(x) y(x) = -x/(x^2-1)
Применим g ( df)/( dx)+f ( dg)/( dx) = ( d)/( dx)(f g) к левой части:
( d)/( dx)(x y(x)) = -x/(x^2-1)
Проинтегрируем обе части по x:
integral ( d)/( dx)(x y(x)) dx = integral -x/(x^2-1) dx
Получаем:
x y(x) = -1/2 log(x^2-1)+c_1, где c_1 произвольная константа.
Разделим обе части на mu(x) = x:
ответ: | | y(x) = (-1/2 log(x^2-1)+c_1)/x