цифры 1,2,3,4,5,6, участвовали в скоростном забеге.Одна цифра пришла первой, две цифры вторыми, три цифры третьими, одна не добежала до финиша. Сколько есть вариантов распределить между цифрами призовые места?
1. При вычисления второй стороны прямоугольника видим, что в сечении получается удвоенный "египетский" треугольник с катетами 6 и 8 и гипотенузой 10 см. Радиус цилиндра R=8., высота = 6 см. Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³ ОТВЕТ: 384π см³ 2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м Угол между сторонами α= 60 град. Используем формулу S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м² Высота призмы H = S/a = √3/2 м² Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³ ОТВЕТ: 1 1/2 м³
1) преобразуем первое уравнение: 3х-6=10-х. Переносим известные в одну сторону и неизвестные в другую (и меняем знаки): 3х+х=10+6 —> 4х=16. Чтобы ответить на вопрос о преобразовании первого уравнения во второе, нужно посмотреть на то, как мы преобразовали первое уравнение. Мы видим, что наше 3х-6=10-х (первое, уже преобразованное уравнение) в точности совпадает со вторым. => ответ на первый вопрос - да. Второе в третье тоже можем преобразить. [ЕЩЕ РАЗ ПРОСМОТРИ ВСЕ ВЫШЕ] Из всего этого следует, что мы рассматриваем ОДНО И ТО ЖЕ УРАВНЕНИЕ! 2) 4х=16, находим х: 16:4=4. 3) преобразуем первое уравнение: 6в-18=10-2в-4; переносим: 8в=10+18-4; 8в=24; в=24:8, в=3. Рассмотрим второе уравнение: 83+5у-15=24у-27; 83-15+27=24у-5у; 95=19у; у=95:19=5.
Радиус цилиндра R=8., высота = 6 см.
Объем цилиндра V = π*R²*H = π*64*6 = 384*π ~ 1206 см³
ОТВЕТ: 384π см³
2. Для вычисления высоты призмы сначала рассчитаем площадь основания - равностороннего треугольника со стороной а= 2 м
Угол между сторонами α= 60 град.
Используем формулу
S = 1/2*a*b*sin(α) = 2*√3/2 =√3 м²
Высота призмы H = S/a = √3/2 м²
Объем призмы V= S*H = √3*√3/2 = 3/2 = 1 1/2 м³
ОТВЕТ: 1 1/2 м³