В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
idxanax
idxanax
02.01.2020 09:10 •  Математика

цифры с низу это варианты ответов ​


цифры с низу это варианты ответов ​

Показать ответ
Ответ:
liliverbovetska
liliverbovetska
06.09.2022 04:19
Если результат оканчивается на 2010, то можно представить его в виде N=1000k+10. Поскольку число 1000 делится на 4 и делится на 25, а число 10 не делится на 4 и на 25, то число N не делится на 4 и не делится на 25. Тогда среди 14 чисел, вошедших в его произведение, ровно одно четное число и ровно одно, кратное 5, то есть, ровно одно оканчивается на четную цифру и ровно одно на цифру 5 (цифр 0 на карточках нет, поэтому это два разных числа). Тогда оставшиеся 12 чисел могут оканчиваться только на цифры 1, 3, 7. Всего таких карточек 1+3+7=11 штук, значит, это невозможно, получили противоречие.

Аналогично, если результат оканчивается на 2012, то N=1000k+12 и число N не делится на 5 и не делится на 8, тогда ни один из его сомножителей не оканчивается на 5 и не более 2 из его сомножителей оканчиваются на четную цифру. Тогда хотя бы 12 из них оканчиваются на цифры 1, 3, 7, что невозможно.

Заметим, что в последнем случае такие рассуждения не работают: если число оканчивается на 2016, то оно делится на 16. Следовательно, среди 14 сомножителей четыре могут оканчиваться на четную цифру, а остальные 10 на цифры 1, 3, 7, что возможно. Конкретный пример таких 14 чисел строить не требуется.

ответ: 2016.
0,0(0 оценок)
Ответ:
4uma4enko4
4uma4enko4
06.09.2022 04:19
Если результат оканчивается на 2010, то можно представить его в виде N=1000k+10. Поскольку число 1000 делится на 4 и делится на 25, а число 10 не делится на 4 и на 25, то число N не делится на 4 и не делится на 25. Тогда среди 14 чисел, вошедших в его произведение, ровно одно четное число и ровно одно, кратное 5, то есть, ровно одно оканчивается на четную цифру и ровно одно на цифру 5 (цифр 0 на карточках нет, поэтому это два разных числа). Тогда оставшиеся 12 чисел могут оканчиваться только на цифры 1, 3, 7. Всего таких карточек 1+3+7=11 штук, значит, это невозможно, получили противоречие.

Аналогично, если результат оканчивается на 2012, то N=1000k+12 и число N не делится на 5 и не делится на 8, тогда ни один из его сомножителей не оканчивается на 5 и не более 2 из его сомножителей оканчиваются на четную цифру. Тогда хотя бы 12 из них оканчиваются на цифры 1, 3, 7, что невозможно.

Заметим, что в последнем случае такие рассуждения не работают: если число оканчивается на 2016, то оно делится на 16. Следовательно, среди 14 сомножителей четыре могут оканчиваться на четную цифру, а остальные 10 на цифры 1, 3, 7, что возможно. Конкретный пример таких 14 чисел строить не требуется.

ответ: 2016.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота