В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
kira310
kira310
21.02.2023 13:16 •  Математика

Cоедините последовательно точки, координаты которых узнаете, решив все уравнения: 1)-2x+19=5x-16 2)8x-25=3x+20 3)6-y=3(3y-8) 4)5(y+1,2)=7y+4 5)4(x-3)-16=5(x-5) 6)3x-17=8x+18 7)11-5y=12-6y 8)4y=(11,8-y)=3,8-5y 9)3x=16=8x-9

Показать ответ
Ответ:
nastyaivanova10k
nastyaivanova10k
02.02.2021 01:25
В случае, если соответствующие коэффициенты при х и у пропорциональны или равны друг другу, а свободные члены - нет. 
Например 
2х + 3у = 4 
4х + 6у = 0 
Потому что 4/2 равно 6/3, но не равно 0/4. 
Графики этих уравнений - параллельные прямые. Они не пересекаются, т. е. не имеют общих точек. Поэтому система не имеет решений. 
В более сложных случаях, когда переменных много, хотя бы два уравнения системы должны обладать свойством, что все коэффициенты при соответствующих переменных пропорциональны (равны) друг другу и не пропорциональны свободным членам. 
Т. е. в общем виде, хотя бы два уравнения системы должны иметь вид 
x1 + x2 + x3 + .+xn = a 
kx1 + kx2 + kx3 + .+kxn = la, 
где k не равно l. 
Или же, если хотя бы одно уравнение системы не имеет решений ни при каких значениях переменных (это достигается тогда и только тогда, когда все значения коэффициентов при переменных равны нулю, а свободный член не равен нул
0,0(0 оценок)
Ответ:
Exem76
Exem76
02.02.2021 01:25
В случае, если соответствующие коэффициенты при х и у пропорциональны или равны друг другу, а свободные члены - нет.
Например
2х + 3у = 4
4х + 6у = 0
Потому что 4/2 равно 6/3, но не равно 0/4.
Графики этих уравнений - параллельные прямые. Они не пересекаются, т. е. не имеют общих точек. Поэтому система не имеет решений.
В более сложных случаях, когда переменных много, хотя бы два уравнения системы должны обладать свойством, что все коэффициенты при соответствующих переменных пропорциональны (равны) друг другу и не пропорциональны свободным членам.
Т. е. в общем виде, хотя бы два уравнения системы должны иметь вид
x1 + x2 + x3 + .+xn = a
kx1 + kx2 + kx3 + .+kxn = la,
где k не равно l.
Или же, если хотя бы одно уравнение системы не имеет решений ни при каких значениях переменных (это достигается тогда и только тогда, когда все значения коэффициентов при переменных равны нулю, а свободный член не равен нулю)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота