Діагональ правильної чотирикутної піраміди дорівнює 24 см, а бічне ребро – 26 см. Знайдіть площу бічної поверхні піраміди.
2. В основі прямої призми лежить прямокутник трикутник, косинус одного з кутів якого дорівнює 0,6. Бічне ребро призми дорівнює 3 см, а її об’єм – 162 см3 Знайдіть площу бічної поверхні призми.
y' = (x v)' = xv' + v
(1 + v^2) + 2v (xv' + v) = 0
2vx v' + (1 + 3v^2) = 0 - уравнение с разделяющимися переменными
2v dv / (1 + 3v^2) = - dx / x
ln(1 + 3v^2) = - 3ln|x| + ln |C|
x^3 * (1 + 3v^2) = C
x^3 * (1 + 3y^2/x^2) = C
Постоянная C находится из начального условия:
(-1)^3 * (1 + 0) = C
C = -1
x^3 * (1 + 3y^2/x^2) = -1
Отсюда в принципе можно выразить y:
x^3 + 3x y^2 = -1
y^2 = (-1 - x^3)/3x
y = +-sqrt((-1 - x^3)/3x))
- Можно решать это уравнение как уравнение Бернулли, тогда можно домножить на x и сделать замену v = y^2.
- Можно домножить на интегрирующий множитель x^2 и получить уравнение в полных дифференциалах.
ответ:1)В первую очередь узнаем номер первой страницы после выпавших листов.
Из цифр числа 274 можно составить следующие возможные комбинации чисел: 247, 724, 742, 427, 472.
Страница 247 нам не подходит, так как меньше 274, а этого быть не может.
Мы знаем, что первая страница будет всегда нечетной, поэтому 724, 742 и 472 нам так же не подходят.
Вывод: номер первой страницы после выпавших листов — 427.
2)Определим количество выпавших страниц: 427 — 274 — 1 = 152 страницы.
3)Осталось узнать, сколько листов выпало из книги: 152 : 2 = 76 листов.