Решение: n = -21*a - 50*bm = 2*(a/5 - b/3) - 3*(a/4 - b/2) решаем методом гауса: дана система ур-ний n=−21a−50bn=−21a−50b m=2(a5−b3)−3a4−3b2m=2(a5−b3)−3a4−3b2 систему ур-ний к каноническому виду 21a+50b+n=021a+50b+n=0 7a20−5b6+m=07a20−5b6+m=0 запишем систему линейных ур-ний в матричном виде [07201121050−5600][012150072010−560] во 2 ом столбце [11][11] делаем так, чтобы все элементы, кроме 2 го элемента равнялись нулю. - для этого берём 2 ую строку [72010−560][72010−560] , и будем вычитать ее из других строк: из 1 ой строки вычитаем: [−720021−−56+500]=[−72002130560][−720021−−56+500]=[−72002130560] получаем [−720720012103056−5600][−7200213056072010−560] составляем элементарные ур-ния из решенной матрицы и видим, что эта система ур-ния не имеет решений −7x120+21x3+305x46=0−7x120+21x3+305x46=0 7x120+x2−5x46=07x120+x2−5x46=0 получаем ответ: данная система ур-ний не имеет решений
Отношение большей стороны к меньшей стороне листа каждого формата одно и то же, поэтому листы всех форматов подобны. Это сделано специально для того, чтобы пропорции текста и его расположение на листе сохранялись при уменьшении или увеличении шрифта при изменении формата листа. Размер (высота) типографского шрифта измеряется в пунктах. Один пункт равен 1/72 дюйма, то есть 0,3528 мм. Какой высоты нужен шрифт (в пунктах), чтобы текст был расположен на листе формата А3 так же, как этот же текст, напечатанный шрифтом высотой 15 пунктов на листе формата А4? Размер шрифта округляется до целого.
Размер (высота) типографского шрифта измеряется в пунктах. Один пункт равен 1/72 дюйма, то есть 0,3528 мм.
Какой высоты нужен шрифт (в пунктах), чтобы текст был расположен на листе формата А3 так же, как этот же текст, напечатанный шрифтом высотой 15 пунктов на листе формата А4?
Размер шрифта округляется до целого.