f(x)=ax^3+bx^2+cx+d
находим a b c d
f(-1)=12
a*(-1)^3 + b*(-1)² + c*(-1) + d = 12
-a + b - c + d = 12
f(0)=6
a*0 + b*0 + c*0 + d = 6
d = 6
f(1)=2
a + b + c + d = 2
получили
a + b + c = -4
-a + b - c = 6
b = 1
a + c = -5
по теореме виета
x1 + x2 + x3 = -b/a
значит
Сумма всех значений x, которые не могут быть корнями уравнения f(x)=0, не равна -1/а
f(x)=ax^3+bx^2+cx+d
находим a b c d
f(-1)=12
a*(-1)^3 + b*(-1)² + c*(-1) + d = 12
-a + b - c + d = 12
f(0)=6
a*0 + b*0 + c*0 + d = 6
d = 6
f(1)=2
a + b + c + d = 2
получили
a + b + c = -4
-a + b - c = 6
b = 1
a + c = -5
по теореме виета
x1 + x2 + x3 = -b/a
значит
Сумма всех значений x, которые не могут быть корнями уравнения f(x)=0, не равна -1/а